Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/8/10.1063/1.4819132
1.
1. A. San-Miguel, Chem. Soc. Rev. 35, 876 (2006).
http://dx.doi.org/10.1039/b517779k
2.
2. S. H. Tolbert, Annu. Rev. Phys. Chem. 46, 595 (1995).
http://dx.doi.org/10.1146/annurev.pc.46.100195.003115
3.
3. S. H. Tolbert, A.B. Herhold, L. Brus, and A.P. Alivisatos, Phys. Rev. Lett. 76, 4384 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4384
4.
4. A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).
http://dx.doi.org/10.1021/jp9535506
5.
5. A. P. Alivisatos, W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng. 7, 55 (2005).
http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100432
6.
6. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
7.
7. M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.145501
8.
8. C. L. Choi, K.J. Koski, S. Sivasankar, and A.P. Alivisatos, Nano Lett. 9, 3544 (2009).
http://dx.doi.org/10.1021/nl9017572
9.
9. C. L. Choi, K.J. Koski, A. C.K. Olson, and A.P. Alivisatos, Proc. Natl. Acad. Sci. U.S.A. 107, 21306 (2010).
http://dx.doi.org/10.1073/pnas.1016022107
10.
10. C.-C. Chen, A.B. Herhold, C.S. Johnson, and A.P. Alivisatos, Science 276, 398 (1997).
http://dx.doi.org/10.1126/science.276.5311.398
11.
11. A. B. Herhold, C.-C. Chen, C.S. Johnson, S.H. Tolbert, and A.P. Alivisatos, Phase Transitions 68, 1 (1999).
http://dx.doi.org/10.1080/01411599908224513
12.
12. M. Grünwald, K. Lutker, A.P. Alivisatos, E. Rabani, and P.L. Geissler, Nano Lett. 13, 1367 (2013).
http://dx.doi.org/10.1021/nl3007165
13.
13. K. Jacobs and A.P. Alivisatos, Rev. Mineral. Geochem. 44, 59 (2001).
http://dx.doi.org/10.2138/rmg.2001.44.02
14.
14. K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, and A.P. Alivisatos, Science 293, 1803 (2001).
http://dx.doi.org/10.1126/science.1063581
15.
15. H. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, A. Lindenberg, M.F. Toney, L.-W. Wang, C. Kisielowski, and A.P. Alivisatos, Science 333, 206 (2011).
http://dx.doi.org/10.1126/science.1204713
16.
16. G. Shen, D. Ikuta, S. Sinogeikin, Q. Li, Y. Zhang, and C. Chen, Phys. Rev. Lett. 109, 205503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.205503
17.
17. C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, and M.C. Payne, J. Chem. Phys. 122, 084119 (2005).
http://dx.doi.org/10.1063/1.1839852
18.
18. N. D. M. Hine, P.D. Haynes, A.A. Mostofi, C.-K. Skylaris, and M.C. Payne, Comput. Phys. Commun. 180, 1041 (2009).
http://dx.doi.org/10.1016/j.cpc.2008.12.023
19.
19. P. W. Avraam, N. D.M. Hine, P. Tangney, and P.D. Haynes, Phys. Rev. B 85, 115404 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115404
20.
20. R. Martoňák, C. Molteni, and M. Parrinello, Phys. Rev. Lett. 84, 682 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.682
21.
21. R. Martoňák, C. Molteni, and M. Parrinello, Comput. Mater. Sci. 20, 293 (2001).
http://dx.doi.org/10.1016/S0927-0256(00)00185-3
22.
22. C. Molteni, R. Martoňák, and M. Parrinello, J. Chem. Phys. 114, 5358 (2001).
http://dx.doi.org/10.1063/1.1345497
23.
23. R. Martoňák, L. Colombo, C. Molteni, and M. Parrinello, J. Chem. Phys. 117, 11329 (2002).
http://dx.doi.org/10.1063/1.1523894
24.
24. C. Molteni and R. Martoňák, ChemPhysChem 6, 1765 (2005).
http://dx.doi.org/10.1002/cphc.200400589
25.
25. B. J. Morgan and P.A. Madden, Nano Lett. 4, 1581 (2004).
http://dx.doi.org/10.1021/nl049403d
26.
26. B. J. Morgan and P.A. Madden, J. Phys. Chem. C 111, 6724 (2007).
http://dx.doi.org/10.1021/jp0714670
27.
27. M. Grünwald, C. Dellago, and P.L. Geissler, J. Chem. Phys. 127, 154718 (2007).
http://dx.doi.org/10.1063/1.2790431
28.
28. M. Grünwald and C. Dellago, Nano Lett. 9, 2099 (2009).
http://dx.doi.org/10.1021/nl900609d
29.
29. R. Martoňák, A. Laio, M. Bernasconi, C. Ceriani, P. Raiteri, F. Zipoli, and M. Parrinello, Z. Kristallogr. 220, 489 (2005).
http://dx.doi.org/10.1524/zkri.220.5.489.65078
30.
30. R. Martoňák, Eur. Phys. J. B 79, 241 (2011).
http://dx.doi.org/10.1140/epjb/e2010-10763-x
31.
31. C. Bealing, R. Martoňák, and C. Molteni, J. Chem. Phys. 130, 124712 (2009).
http://dx.doi.org/10.1063/1.3086043
32.
32. C. Bealing, R. Martoňák, and C. Molteni, Solid State Sci. 12, 157 (2010).
http://dx.doi.org/10.1016/j.solidstatesciences.2009.05.028
33.
33. D. Y. Sun and X.G. Gong, J. Phys.: Condens. Matter 14, L487 (2002).
http://dx.doi.org/10.1088/0953-8984/14/26/101
34.
34. A. Landau, J. Chem. Phys. 117, 8607 (2002).
http://dx.doi.org/10.1063/1.1513153
35.
35. D. Y. Sun and X.G. Gong, Phys. Rev. B 57, 4730 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4730
36.
36. C. Bealing, G. Fugallo, R. Martoňák, and C. Molteni, Phys. Chem. Chem. Phys. 12, 8542 (2010).
http://dx.doi.org/10.1039/c004053c
37.
37. F. Calvo and J. P.K. Doye, Phys. Rev. B 69, 125414 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125414
38.
38. S. Baltazar, A. Romero, J. Rodriguez-Lopez, H. Terrones, and R. Martoňák, Comput. Mater. Sci. 37, 526 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.12.028
39.
39. R. Anthony and U. Kortshagen, Phys. Rev. B 80, 115407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115407
40.
40. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).
http://dx.doi.org/10.1063/1.2210788
41.
41. W. L. Wilson, P.F. Szajowski, and L.E. Brus, Science 262, 1242 (1993).
http://dx.doi.org/10.1126/science.262.5137.1242
42.
42. S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, and G. Galli, Phys. Rev. Lett. 110, 046804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.046804
43.
43. D. C. Hannah, J. Yang, P. Podsiadlo, M. K.Y. Chan, A. Demortière, D.J. Gosztola, V.B. Prakapenka, G.C. Schatz, U. Kortshagen, and R.D. Schaller, Nano Lett. 12, 4200 (2012).
http://dx.doi.org/10.1021/nl301787g
44.
44. A. A. Mostofi, C.-K. Skylaris, P.D. Haynes, and M.C. Payne, Comput. Phys. Commun. 147, 788 (2002).
http://dx.doi.org/10.1016/S0010-4655(02)00461-7
45.
45. R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).
http://dx.doi.org/10.1103/RevModPhys.32.335
46.
46. E. Prodan and W. Kohn, Proc. Natl. Acad. Sci. U.S.A. 102, 11635 (2005).
http://dx.doi.org/10.1073/pnas.0505436102
47.
47. S. J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M. I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).
http://dx.doi.org/10.1524/zkri.220.5.567.65075
48.
48. C.-K. Skylaris and P.D. Haynes, J. Chem. Phys. 127, 164712 (2007).
http://dx.doi.org/10.1063/1.2796168
49.
49. J. S. Lin, A. Qteish, M.C. Payne, and V. Heine, Phys. Rev. B 47, 4174 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4174
50.
50. D. M. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
51.
51. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
52.
52. P. Vinet, J. Ferrante, J.R. Smith, and J.H. Rose, J. Phys. C 19, L467 (1986).
http://dx.doi.org/10.1088/0022-3719/19/20/001
53.
53. P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).
http://dx.doi.org/10.1088/0953-8984/1/11/002
54.
54. While the density technically oscillates outside thelocalization radii, the magnitude of these oscillations is of the order of , well below the typical values of α, and hence is not a hindrancewhen defining an electronic volume.44
55.
55. N. D. M. Hine, J. Dziedzic, P.D. Haynes, and C.-K. Skylaris, J. Chem. Phys. 135, 204103 (2011).
http://dx.doi.org/10.1063/1.3662863
56.
56. Á. Ruiz-Serrano, N. D.M. Hine, and C.-K. Skylaris, J. Chem. Phys. 136, 234101 (2012).
http://dx.doi.org/10.1063/1.4728026
57.
57. N. D. M. Hine, M. Robinson, P.D. Haynes, C.-K. Skylaris, M.C. Payne, and A.A. Mostofi, Phys. Rev. B 83, 195102 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195102
58.
58. J. Soler, E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
59.
59. J. Nocedal and S.J. Wright, Numerical Optimization(Springer Verlag, 1999).
60.
60. R. P. Feynman, Phys. Rev. 56, 340 (1939).
http://dx.doi.org/10.1103/PhysRev.56.340
61.
61. E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi, and S. Ossicini, Phys. Rev. B 69, 155411 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155411
62.
62. F. Birch, J. Geophys. Res. 57, 227, doi:10.1029/JZ057i002p00227 (1952).
http://dx.doi.org/10.1029/JZ057i002p00227
63.
63. D. Buttard, G. Dolino, C. Faivre, A. Halimaoui, F. Comin, V. Formoso, and L. Ortega, J. Appl. Phys. 85, 7105 (1999).
http://dx.doi.org/10.1063/1.370518
64.
64. H.-C. Weissker, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 67, 245304 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.245304
65.
65. J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).
http://dx.doi.org/10.1098/rspa.1957.0133
66.
66. P. Sharma and S. Ganti, J. Appl. Mech. 71, 663 (2004).
http://dx.doi.org/10.1115/1.1781177
67.
67. S. J. Duclos, Y.K. Vohra, and A.L. Ruoff, Phys. Rev. B 41, 12021 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12021
68.
68. H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).
http://dx.doi.org/10.1088/0953-8984/19/27/275204
69.
69. H. Olijnyk, S. Sikka, and W.B. Holzapfel, Phys. Lett. A 103, 137 (1984).
http://dx.doi.org/10.1016/0375-9601(84)90219-6
70.
70. S. K. Deb, M. Wilding, M. Somayazulu, and P.F. McMillan, Nature (London) 414, 528 (2001).
http://dx.doi.org/10.1038/35107036
71.
71. N. Garg, K.K. Pandey, K.V. Shanavas, C.A. Betty, and S.M. Sharma, Phys. Rev. B 83, 115202 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115202
72.
72. K. K. Pandey, N. Garg, K.V. Shanavas, S.M. Sharma, and S.K. Sikka, J. App. Phys. 109, 113511 (2011).
http://dx.doi.org/10.1063/1.3592963
73.
73. D. Daisenberger, M. Wilson, P.F. McMillan, R.Q. Cabrera, M.C. Wilding, and D. Machon, Phys. Rev. B 75, 224118 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.224118
74.
74. D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R. Quesada Cabrera, M. Wilson, and P.F. McMillan, J. Phys. Chem. B 115, 14246 (2011).
http://dx.doi.org/10.1021/jp205090s
75.
75. T. Morishita, Phys. Rev. Lett. 93, 055503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.055503
76.
76. T. Morishita, J. Chem. Phys. 130, 194709 (2009).
http://dx.doi.org/10.1063/1.3126093
77.
77. M. Durandurdu, Phys. Rev. B 73, 035209 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035209
78.
78. M. Durandurdu and D.A. Drabold, Phys. Rev. B 64, 014101 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.014101
79.
79. R. Martoňák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 92, 225702 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.225702
80.
80. L. Guttman, J. Non-Cryst. Solids 116, 145 (1990).
http://dx.doi.org/10.1016/0022-3093(90)90686-G
81.
81. S. Le Roux and P. Jund, Comput. Mater. Sci. 49, 70 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.04.023
82.
82. B. Engels, P. Richard, K. Schroeder, S. Blügel, P. Ebert, and K. Urban, Phys. Rev. B 58, 7799 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7799
83.
83. B. Welber, C.K. Kim, M. Cardona, and S. Rodriguez, Solid State Commun. 17, 1021 (1975).
http://dx.doi.org/10.1016/0038-1098(75)90245-8
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/8/10.1063/1.4819132
Loading
/content/aip/journal/jcp/139/8/10.1063/1.4819132
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/8/10.1063/1.4819132
2013-08-30
2016-12-04

Abstract

We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to benatural and efficient for the calculation of finite systems underhydrostatic pressure. Based on a definition of the system volume as that enclosed within anelectronic density isosurface [M. Cococcioni, F. Mauri,G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports bothgeometry optimizations and molecular dynamics simulations. We introduce an approach for calibratingthe parameters defining the volume in the context of geometry optimizations and discuss theirsignificance. Results in good agreement with simulations using explicit solvents are obtained, validating ourapproach. Size-dependent pressure-induced structural transformations andvariations in the energy gap of hydrogenated silicon nanocrystals areinvestigated, including one comparable in size to recent experiments. A detailed analysis of thepolyamorphic transformationsreveals three types of amorphous structures and theirpersistence on depressurization is assessed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/8/1.4819132.html;jsessionid=BczSefp3miw2I86jQlwnS3ly.x-aip-live-06?itemId=/content/aip/journal/jcp/139/8/10.1063/1.4819132&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/8/10.1063/1.4819132&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/8/10.1063/1.4819132'
Right1,Right2,Right3,