Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/8/10.1063/1.4819774
1.
1. M. L. Sanchez, M. A. Aguilar, and F. J. Olivares, J. Comput. Chem. 18, 313 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199702)18:3<313::AID-JCC2>3.0.CO;2-X
2.
2. M. L. Sanchez, M. E. Martin, M. A. Aguilar, and F. J. Olivares del Valle, J. Comput. Chem. 21, 705 (2000).
http://dx.doi.org/10.1002/(SICI)1096-987X(20000715)21:9<705::AID-JCC1>3.0.CO;2-O
3.
3. M. E. Mart, M. A. Aguilar, and S. Chalmet, Chem. Phys. Lett. 344, 107 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00772-2
4.
4. Z. Xu and S. Matsika, J. Phys. Chem. A 110, 12035 (2006).
http://dx.doi.org/10.1021/jp064520d
5.
5. K. Coutinho, H. Georg, T. Fonseca, V. Ludwig, and S. Canuto, Chem. Phys. Lett. 437, 148 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.02.012
6.
6. H. Sato, Phys. Chem. Chem. Phys. 15, 7450 (2013).
http://dx.doi.org/10.1039/c3cp50247c
7.
7. J. Chandrasekhar, S. F. Smith, and W. L. Jorgensen, J. Am. Chem. Soc. 107, 154 (1985).
http://dx.doi.org/10.1021/ja00287a028
8.
8. R. V. Stanton, M. Peräkylä, D. Bakowies, and P. A. Kollman, J. Am. Chem. Soc. 120, 3448 (1998).
http://dx.doi.org/10.1021/ja972723x
9.
9. Y. Zhang, H. Liu, and W. Yang, J. Chem. Phys. 112, 3483 (2000).
http://dx.doi.org/10.1063/1.480503
10.
10. N. Ferre and J. Angyan, Chem. Phys. Lett. 356, 331 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00343-3
11.
11. T. H. Rod and U. Ryde, J. Chem. Theory Comput. 1, 1240 (2005).
http://dx.doi.org/10.1021/ct0501102
12.
12. J. Kastner, H. M. Senn, S. Thiel, N. Otte, and W. Thiel, J. Chem. Theory Comput. 2, 452 (2006).
http://dx.doi.org/10.1021/ct050252w
13.
13. P. Pulay and T. Janowski, Int. J. Quantum Chem. 109, 2113 (2009).
http://dx.doi.org/10.1002/qua.22064
14.
14. T. Janowski, K. Wolinski, and P. Pulay, Chem. Phys. Lett. 530, 1 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.01.008
15.
15. H. Nakano and T. Yamamoto, J. Chem. Theory Comput. 9, 188 (2013).
http://dx.doi.org/10.1021/ct300831t
16.
16. G. J. O. Beran, J. Chem. Phys. 130, 164115 (2009).
http://dx.doi.org/10.1063/1.3121323
17.
17. S. Wen and G. J. O. Beran, J. Chem. Theory Comput. 7, 3733 (2011).
http://dx.doi.org/10.1021/ct200541h
18.
18. S. Wen, K. Nanda, Y. Huang, and G. J. O. Beran, Phys. Chem. Chem. Phys. 14, 7578 (2012).
http://dx.doi.org/10.1039/c2cp23949c
19.
19. A. Sebetci and G. J. O. Beran, J. Chem. Theory Comput. 6, 155 (2010).
http://dx.doi.org/10.1021/ct900545v
20.
20. E. A. L. Gillis, M. Demireva, K. Nanda, G. J. O. Beran, E. R. Williams, and T. D. Fridgen, Phys. Chem. Chem. Phys. 14, 3304 (2012).
http://dx.doi.org/10.1039/c1cp22984b
21.
21. S. Wen and G. J. O. Beran, Cryst. Growth Des. 12, 2169 (2012).
http://dx.doi.org/10.1021/cg300358n
22.
22. S. Wen and G. J. O. Beran, J. Chem. Theory Comput. 8, 2698 (2012).
http://dx.doi.org/10.1021/ct300484h
23.
23. A. J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 2002), pp. 3235.
24.
24. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).
http://dx.doi.org/10.1016/0021-9991(87)90140-9
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4819774 for additional theoretical details, the geometries of the 50 solvent configurations, and interaction energies for each configuration. [Supplementary Material]
26.
26. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
27.
27. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/8/10.1063/1.4819774
Loading
/content/aip/journal/jcp/139/8/10.1063/1.4819774
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/8/10.1063/1.4819774
2013-08-29
2016-09-30

Abstract

To avoid repeated, computationally expensive QM solute calculations while sampling MM solvent in QM/MM simulations, a new approach for constructing an implicit solvent model by coarse-graining the solvent properties over many explicit solvent configurations is proposed. The solvent is modeled using a polarizable force field that is parameterized in terms of distributed multipoles (electrostatics), polarizabilities (induction), and frequency-dependent polarizabilities (dispersion). The coarse-graining procedure exploits the ability to translate these properties to the center of each coarse-graining cell and average them over many solvent configurations before interacting them with the solute. A single coarse-grained QM/MM calculation of the interaction between a formamide solute and aqueous solvent reproduces the much more expensive average over many explicit QM/MM calculations with kJ/mol accuracy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/8/1.4819774.html;jsessionid=2Nb48dgJ0IRsH0mtogHSm3_q.x-aip-live-03?itemId=/content/aip/journal/jcp/139/8/10.1063/1.4819774&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/8/10.1063/1.4819774&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/8/10.1063/1.4819774'
Right1,Right2,Right3,