Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/8/10.1063/1.4819784
1.
1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
http://dx.doi.org/10.1063/1.103561
2.
2. X. M. Zhang, D. Neiner, S. Z. Wang, A. Y. Louie, and S. M. Kauzlarich, Nanotechnology 18, 095601 (2007).
http://dx.doi.org/10.1088/0957-4484/18/9/095601
3.
3. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.197
4.
4. F. A. Reboredo, A. Franceschetti, and A. Zunger, Phys. Rev. B 61, 13073 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13073
5.
5. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y. H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, and P. H. Citrin, Phys. Rev. B 52, 4910 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.4910
6.
6. M. Carrada, A. Wellner, V. Paillard, C. Bonafos, H. Coffin, and A. Claverie, Appl. Phys. Lett. 87, 251911 (2005).
http://dx.doi.org/10.1063/1.2143130
7.
7. T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3803
8.
8. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, J. Appl. Phys. 87, 3829 (2000).
http://dx.doi.org/10.1063/1.372421
9.
9. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).
http://dx.doi.org/10.1063/1.2210788
10.
10. J. Valenta, R. Juhasz, and J. Linnros, Appl. Phys. Lett. 80, 1070 (2002).
http://dx.doi.org/10.1063/1.1448400
11.
11. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, Phys. Rev. Lett. 88, 097401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.097401
12.
12. I. Vasiliev, J. R. Chelikowsky, and R. M. Martin, Phys. Rev. B 65, 121302 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.121302
13.
13. M. Luppi and S. Ossicini, Phys. Rev. B 71, 035340 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035340
14.
14. X. B. Chen, X. D. Pi, and D. R. Yang, J. Phys. Chem. C 114, 8774 (2010).
http://dx.doi.org/10.1021/jp100632u
15.
15. T. J. Pennycook, G. Hadjisavvas, J. C. Idrobo, P. C. Kelires, and S. T. Pantelides, Phys. Rev. B 82, 125310 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125310
16.
16. N. Tit and M. W. C. Dharma-wardana, Phys. Lett. A 254, 233 (1999).
http://dx.doi.org/10.1016/S0375-9601(99)00070-5
17.
17. G. Hadjisavvas and P. C. Kelires, Phys. Rev. Lett. 93, 226104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.226104
18.
18. E. Degoli, R. Guerra, F. Iori, R. Magri, I. Marri, O. Pulci, O. Bisi, and S. Ossicini, C. R. Phys. 10, 575 (2009).
http://dx.doi.org/10.1016/j.crhy.2008.09.003
19.
19. Z. Y. Zhou, L. Brus, and R. Friesner, Nano Lett. 3, 163 (2003).
http://dx.doi.org/10.1021/nl025890q
20.
20. L. E. Ramos, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 70, 033311 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.033311
21.
21. D. Konig, J. Rudd, M. A. Green, and G. Conibeer, Sol. Energy Mater. Sol. Cells 93, 753 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.026
22.
22. K. Seino, F. Bechstedt, and P. Kroll, Nanotechnology 20, 135702 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135702
23.
23. R. Guerra, E. Degoli, and S. Ossicini, Phys. Rev. B 80, 155332 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155332
24.
24. T. S. Li, F. Gygi, and G. Galli, Phys. Rev. Lett. 107, 206805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.206805
25.
25. J. von Behren, T. van Buuren, M. Zacharias, E. H. Chimowitz, and P. M. Fauchet, Solid State Commun. 105, 317 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10099-0
26.
26. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Am. Chem. Soc. 125, 2786 (2003).
http://dx.doi.org/10.1021/ja0293296
27.
27. E. Luppi, E. Degoli, G. Cantele, S. Ossicini, R. Magri, D. Ninno, O. Bisi, O. Pulci, G. Onida, M. Gatti, A. Incze, and R. Del Sole, Opt. Mater. 27, 1008 (2005).
http://dx.doi.org/10.1016/j.optmat.2004.08.054
28.
28. M. L. del Puerto, M. Jain, and J. R. Chelikowsky, Phys. Rev. B 81, 035309 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035309
29.
29. B. B. Stefanov, A. B. Gurevich, M. K. Weldon, K. Raghavachari, and Y. J. Chabal, Phys. Rev. Lett. 81, 3908 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3908
30.
30. W. Domcke and D. R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032210-103522
31.
31. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
32.
32. R. N. Hall, Phys. Rev. 87, 387 (1952).
http://dx.doi.org/10.1103/PhysRev.87.387
33.
33. B. G. Levine, J. D. Coe, A. M. Virshup, and T. J. Martinez, Chem. Phys. 347, 3 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.01.014
34.
34. S. G. Abuabara, L. G. C. Rego, and V. S. Batista, J. Am. Chem. Soc. 127, 18234 (2005).
http://dx.doi.org/10.1021/ja055185u
35.
35. C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95, 163001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.163001
36.
36. T. Nelson, S. Fernandez-Alberti, V. Chernyak, A. E. Roitberg, and S. Tretiak, J. Phys. Chem. B 115, 5402 (2011).
http://dx.doi.org/10.1021/jp109522g
37.
37. A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, Nat. Mater. 12, 66 (2013).
http://dx.doi.org/10.1038/NMAT3500
38.
38. E. J. Heller, J. Chem. Phys. 75, 2923 (1981).
http://dx.doi.org/10.1063/1.442382
39.
39. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
http://dx.doi.org/10.1063/1.475855
40.
40. B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
41.
41. B. O. Roos and P. R. Taylor, Chem. Phys. 48, 157 (1980).
http://dx.doi.org/10.1016/0301-0104(80)80045-0
42.
42. C. A. Caras, J. M. Reynard, and F. V. Bright, Appl. Spectrosc. 67, 570 (2013).
http://dx.doi.org/10.1366/12-06886
43.
43. R. W. Liptak, U. Kortshagen, and S. A. Campbell, J. Appl. Phys. 106, 064313 (2009).
http://dx.doi.org/10.1063/1.3225570
44.
44. U. Khalilov, G. Pourtois, A. C. T. van Duin, and E. C. Neyts, J. Phys. Chem. C 116, 21856 (2012).
http://dx.doi.org/10.1021/jp306920p
45.
45. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
46.
46.See supplementary materials at http://dx.doi.org/10.1063/1.4819784 for additional simulation details, pictures of the active orbitals, details of CASPT2 optimized structures, and CASPT2 energies calculated at CASSCF spawning geometries. [Supplementary Material]
47.
47. B. G. Levine, J. D. Coe, and T. J. Martinez, J. Phys. Chem. B 112, 405 (2008).
http://dx.doi.org/10.1021/jp0761618
48.
48. F. Huisken, G. Ledoux, O. Guillois, and C. Reynaud, Adv. Mater. 14, 1861 (2002).
http://dx.doi.org/10.1002/adma.200290021
49.
49. T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, Phys. Rev. B 86, 125302 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125302
50.
50. J. Finley, P. A. Malmqvist, B. O. Roos, and L. Serrano-Andres, Chem. Phys. Lett. 288, 299 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00252-8
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/8/10.1063/1.4819784
Loading
/content/aip/journal/jcp/139/8/10.1063/1.4819784
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/8/10.1063/1.4819784
2013-08-28
2016-09-27

Abstract

Localization of electronic excitations at molecule-sized semiconductor defects often precedes non-radiative (NR) decay, and it is known that many molecules undergo NR decay via conical intersection. Herein, we report the direct simulation of fast and efficient NR decay via a conical intersection at a known semiconductor defect. It is suggested that this silicon epoxide defect may selectively quench photoluminescence (PL) in small silicon nanocrystals (band gap > ∼2.8 eV), and thus influence both the observed PL yield and PL energy of oxidized silicon nanocrystals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/8/1.4819784.html;jsessionid=l3Wwe11KdypDMCsRBEIre9Be.x-aip-live-06?itemId=/content/aip/journal/jcp/139/8/10.1063/1.4819784&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/8/10.1063/1.4819784&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/8/10.1063/1.4819784'
Right1,Right2,Right3,