1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Coarse-grained models for biomolecular systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/9/10.1063/1.4818908
1.
1. R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw-Hill, New York, 1962).
2.
2. P. W. Anderson, Science 177, 393 (1972).
http://dx.doi.org/10.1126/science.177.4047.393
3.
3. Coarse-Graining of Condensed Phase and Biomolecular Systems, edited by G. A. Voth (CRC Press, Boca Raton, FL, 2008).
4.
4. D. Fritz, C. R. Herbers, K. Kremer, and N. F. A. van der Vegt, Soft Matter 5, 4556 (2009).
http://dx.doi.org/10.1039/b911713j
5.
5. T. Schlick, R. Collepardo-Guevara, L. A. Halvorsen, S. Jung, and X. Xiao, Q. Rev. Biophys. 44, 191 (2011).
http://dx.doi.org/10.1017/S0033583510000284
6.
6. S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein, J. Phys.: Condens. Matter 16, R481 (2004).
http://dx.doi.org/10.1088/0953-8984/16/15/R03
7.
7. G. S. Ayton, W. G. Noid, and G. A. Voth, Curr. Opin. Struct. Biol. 17, 192 (2007).
http://dx.doi.org/10.1016/j.sbi.2007.03.004
8.
8. C. Clementi, Curr. Opin. Struct. Biol. 18, 10 (2008).
http://dx.doi.org/10.1016/j.sbi.2007.10.005
9.
9. S. Matysiak and C. Clementi, Arch. Biochem. Biophys. 469, 29 (2008).
http://dx.doi.org/10.1016/j.abb.2007.08.019
10.
10. C. Peter, L. Delle Site, and K. Kremer, Soft Matter 4, 859 (2008).
http://dx.doi.org/10.1039/b717324e
11.
11. P. Sherwood, B. R. Brooks, and M. S. P. Sansom, Curr. Opin. Struct. Biol. 18, 630 (2008).
http://dx.doi.org/10.1016/j.sbi.2008.07.003
12.
12. T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, and M. Karttunen, Phys. Chem. Chem. Phys. 11, 1869 (2009).
http://dx.doi.org/10.1039/b818051b
13.
13. C. Peter and K. Kremer, Faraday Discuss. 144, 9 (2010).
http://dx.doi.org/10.1039/b919800h
14.
14. J. Trylska, J. Phys.: Condens. Matter 22, 453101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/45/453101
15.
15. C. Hyeon and D. Thirumalai, Nat. Commun. 2, 487 (2011).
http://dx.doi.org/10.1038/ncomms1481
16.
16. S. C. L. Kamerlin, S. Vicatos, A. Dryga, and A. Warshel, Annu. Rev. Phys. Chem. 62, 41 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103335
17.
17. S. Takada, Curr. Opin. Struct. Biol. 22, 130 (2012).
http://dx.doi.org/10.1016/j.sbi.2012.01.010
18.
18. S. Riniker, J. R. Allison, and W. F. van Gunsteren, Phys. Chem. Chem. Phys. 14, 12423 (2012).
http://dx.doi.org/10.1039/c2cp40934h
19.
19. M. G. Saunders and G. A. Voth, Annu. Rev. Biophys. 42, 73 (2013).
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
20.
20. J. W. Mullinax and W. G. Noid, J. Chem. Phys. 131, 104110 (2009).
http://dx.doi.org/10.1063/1.3220627
21.
21. Q. Shi, S. Izvekov, and G. A. Voth, J. Phys. Chem. B 110, 15045 (2006).
http://dx.doi.org/10.1021/jp062700h
22.
22. C. F. Abrams, J. Chem. Phys. 123, 234101 (2005).
http://dx.doi.org/10.1063/1.2136884
23.
23. M. Praprotnik, L. Delle Site, and K. Kremer, J. Chem. Phys. 123, 224106 (2005).
http://dx.doi.org/10.1063/1.2132286
24.
24. M. Praprotnik, L. Delle Site, and K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093707
25.
25. A. Heyden and D. G. Truhlar, J. Chem. Theory Comput. 4, 217 (2008).
http://dx.doi.org/10.1021/ct700269m
26.
26. B. Ensing, S. O. Nielsen, P. B. Moore, M. L. Klein, and M. Parrinello, J. Chem. Theory Comput. 3, 1100 (2007).
http://dx.doi.org/10.1021/ct600323n
27.
27. S. O. Nielsen, R. E. Bulo, P. B. Moore, and B. Ensing, Phys. Chem. Chem. Phys. 12, 12401 (2010).
http://dx.doi.org/10.1039/c004111d
28.
28. T. Murtola, M. Karttunen, and I. Vattulainen, J. Chem. Phys. 131, 055101 (2009).
http://dx.doi.org/10.1063/1.3167405
29.
29. J. Zhang and M. Muthukumar, J. Chem. Phys. 130, 035102 (2009).
http://dx.doi.org/10.1063/1.3050295
30.
30. J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. R. Dinner, and G. A. Voth, J. Chem. Theory Comput. 9, 2466 (2013).
http://dx.doi.org/10.1021/ct4000444
31.
31. J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981).
http://dx.doi.org/10.1063/1.441483
32.
32. M. Babadi, R. Everaers, and M. R. Ejtehadi, J. Chem. Phys. 124, 174708 (2006).
http://dx.doi.org/10.1063/1.2179075
33.
33. A. Das, L. Lu, H. C. Andersen, and G. A. Voth, J. Chem. Phys. 136, 194115 (2012).
http://dx.doi.org/10.1063/1.4705420
34.
34. W. Tschöp, K. Kremer, O. Hahn, J. Batoulis, and T. Bürger, Acta Polym. 49, 75 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4044(199802)49:2/3<75::AID-APOL75>3.0.CO;2-5
35.
35. A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr., Protein Sci. 12, 2001 (2003).
http://dx.doi.org/10.1110/ps.03154503
36.
36. J. Maupetit, R. Gautier, and P. Tufféry, Nucleic Acids Res. 34, W147 (2006).
http://dx.doi.org/10.1093/nar/gkl289
37.
37. P. Rotkiewicz and J. Skolnick, J. Comput. Chem. 29, 1460 (2008).
http://dx.doi.org/10.1002/jcc.20906
38.
38. S. M. Gopal, S. Mukherjee, Y.-M. Cheng, and M. Feig, Proteins 78, 1266 (2010).
http://dx.doi.org/10.1002/prot.22645
39.
39. M. Maciejczyk, A. Spasic, A. Liwo, and H. A. Scheraga, J. Comput. Chem. 31, 1644 (2010).
http://dx.doi.org/10.1002/jcc.21448
40.
40. G. S. Ayton and G. A. Voth, Curr. Opin. Struct. Biol. 19, 138 (2009).
http://dx.doi.org/10.1016/j.sbi.2009.03.001
41.
41. M. G. Saunders and G. A. Voth, Curr. Opin. Struct. Biol. 22, 144 (2012).
http://dx.doi.org/10.1016/j.sbi.2012.01.003
42.
42. H. Gohlke and M. F. Thorpe, Biophys. J. 91, 2115 (2006).
http://dx.doi.org/10.1529/biophysj.106.083568
43.
43. Z. Y. Zhang, L. Y. Lu, W. G. Noid, V. Krishna, J. Pfaendtner, and G. A. Voth, Biophys. J. 95, 5073 (2008).
http://dx.doi.org/10.1529/biophysj.108.139626
44.
44. A. V. Sinitskiy, M. G. Saunders, and G. A. Voth, J. Phys. Chem. B 116, 8363 (2012).
http://dx.doi.org/10.1021/jp2108895
45.
45. R. Potestio, F. Pontiggia, and C. Micheletti, Biophys. J. 96, 4993 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.03.051
46.
46. M. Stepanova, Phys. Rev. E 76, 051918 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.051918
47.
47. S. Kundu, D. C. Sorensen, and G. N. Phillips, Proteins 57, 725 (2004).
http://dx.doi.org/10.1002/prot.20268
48.
48. V. A. Harmandaris, D. Reith, N. F. A. Van der Vegt, and K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007).
http://dx.doi.org/10.1002/macp.200700245
49.
49. A. Arkhipov, P. Freddolino, and K. Schulten, Structure 14, 1767 (2006).
http://dx.doi.org/10.1016/j.str.2006.10.003
50.
50. A. Arkhipov, Y. Yin, and K. Schulten, Biophys. J. 95, 2806 (2008).
http://dx.doi.org/10.1529/biophysj.108.132563
51.
51. Z. Y. Zhang and G. A. Voth, J. Chem. Theory Comput. 6, 2990 (2010).
http://dx.doi.org/10.1021/ct100374a
52.
52. B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os, and A. G. Schlijper, Nature (London) 348, 624 (1990).
http://dx.doi.org/10.1038/348624a0
53.
53. R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).
http://dx.doi.org/10.1063/1.476160
54.
54. G. Brannigan, L. C.-L. Lin, and F. L. H. Brown, Eur. Biophys. J. 35, 104 (2006).
http://dx.doi.org/10.1007/s00249-005-0013-y
55.
55. M. Muller, K. Katsov, and M. Schick, Phys. Rep. 434, 113 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.08.003
56.
56. M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.07.006
57.
57. M. Deserno, Macromol. Rapid Commun. 30, 752 (2009).
http://dx.doi.org/10.1002/marc.200900090
58.
58. S. J. Marrink, A. H. de Vries, and D. P. Tieleman, Biochim. Biophys. Act. 1788, 149 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.10.006
59.
59. V. Molinero and W. A. Goddard, “Molecular modeling of carbohydrates with no charges, no hydrogen bonds, and no atoms,” in NMR Spectroscopy and Computer Modeling of Carbohydrates, ACS Symposium Series, Vol. 930 (ACS, 2006), Chap. 15, pp. 271284.
60.
60. P. Liu, S. Izvekov, and G. A. Voth, J. Phys. Chem. B 111, 11566 (2007).
http://dx.doi.org/10.1021/jp0721494
61.
61. C. A. Lopez, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hunenberger, and S. J. Marrink, J. Chem. Theory Comput. 5, 3195 (2009).
http://dx.doi.org/10.1021/ct900313w
62.
62. H. M. Cho, A. S. Gross, and J.-W. Chu, J. Am. Chem. Soc. 133, 14033 (2011).
http://dx.doi.org/10.1021/ja2046155
63.
63. A.-P. Hynninen, J. F. Matthews, G. T. Beckham, M. F. Crowley, and M. R. Nimlos, J. Chem. Theory Comput. 7, 2137 (2011).
http://dx.doi.org/10.1021/ct200092t
64.
64. J. Wohlert and L. A. Berglund, J. Chem. Theory Comput. 7, 753 (2011).
http://dx.doi.org/10.1021/ct100489z
65.
65. G. Srinivas, X. Cheng, and J. C. Smith, J. Chem. Theory Comput. 7, 2539 (2011).
http://dx.doi.org/10.1021/ct200181t
66.
66. S. Markutsya, Y. A. Kholod, A. Devarajan, T. L. Windus, M. S. Gordon, and M. H. Lamm, Theor. Chem. Acc. 131, 1162 (2012).
http://dx.doi.org/10.1007/s00214-012-1162-6
67.
67. M. Levitt and A. Warshel, Nature (London) 253, 694 (1975).
http://dx.doi.org/10.1038/253694a0
68.
68. M. Levitt, J. Mol. Biol. 104, 59 (1976).
http://dx.doi.org/10.1016/0022-2836(76)90004-8
69.
69. V. Tozzini, W. Rocchia, and J. A. McCammon, J. Chem. Theory Comput. 2, 667 (2006).
http://dx.doi.org/10.1021/ct050294k
70.
70. J. D. Honeycutt and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 87, 3526 (1990).
http://dx.doi.org/10.1073/pnas.87.9.3526
71.
71. S. Brown, N. J. Fawzi, and T. Head-Gordon, Proc. Natl. Acad. Sci. U.S.A. 100, 10712 (2003).
http://dx.doi.org/10.1073/pnas.1931882100
72.
72. D. Thirumalai and D. K. Klimov, Curr. Opin. Struct. Biol. 9, 197 (1999).
http://dx.doi.org/10.1016/S0959-440X(99)80028-1
73.
73. J. M. Sorenson and T. Head-Gordon, Proteins 46, 368 (2002).
http://dx.doi.org/10.1002/prot.1174
74.
74. M. Friedel, D. J. Sheeler, and J.-E. Shea, J. Chem. Phys. 118, 8106 (2003).
http://dx.doi.org/10.1063/1.1564048
75.
75. M. Enciso and A. Rey, J. Chem. Phys. 136, 215103 (2012).
http://dx.doi.org/10.1063/1.4725883
76.
76. I. Bahar, T. R. Lezon, L. W. Yang, and E. Eyal, Annu. Rev. Biophys. 39, 23 (2010).
http://dx.doi.org/10.1146/annurev.biophys.093008.131258
77.
77. P. C. Whitford, K. Y. Sanbonmatsu, and J. N. Onuchic, Rep. Prog. Phys. 75, 076601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076601
78.
78. A. Rey and J. Skolnick, Chem. Phys. 158, 199 (1991).
http://dx.doi.org/10.1016/0301-0104(91)87067-6
79.
79. B. M. Messer, M. Roca, Z. T. Chu, S. Vicatos, A. V. Kilshtain, and A. Warshel, Proteins 78, 1212 (2010).
http://dx.doi.org/10.1002/prot.22640
80.
80. A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, J. Comput. Chem. 18, 849 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199705)18:7<849::AID-JCC1>3.0.CO;2-R
81.
81. A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, J. Chem. Phys. 115, 2323 (2001).
http://dx.doi.org/10.1063/1.1383989
82.
82. A. Liwo, Y. He, and H. A. Scheraga, Phys. Chem. Chem. Phys. 13, 16890 (2011).
http://dx.doi.org/10.1039/c1cp20752k
83.
83. M. Zacharias, Protein Sci. 12, 1271 (2003).
http://dx.doi.org/10.1110/ps.0239303
84.
84. N. Basdevant, D. Borgis, and T. Ha-Duong, J. Phys. Chem. B 111, 9390 (2007).
http://dx.doi.org/10.1021/jp0727190
85.
85. S. Takada, Z. Luthey-Schulten, and P. G. Wolynes, J. Chem. Phys. 110, 11616 (1999).
http://dx.doi.org/10.1063/1.479101
86.
86. A. Irbäck, F. Sjunnesson, and S. Wallin, Proc. Natl. Acad. Sci. U.S.A. 97, 13614 (2000).
http://dx.doi.org/10.1073/pnas.240245297
87.
87. C. Guo, M. S. Cheung, H. Levine, and D. A. Kessler, J. Chem. Phys. 116, 4353 (2002).
http://dx.doi.org/10.1063/1.1448493
88.
88. H. D. Nguyen and C. K. Hall, Proc. Natl. Acad. Sci. U.S.A. 101, 16180 (2004).
http://dx.doi.org/10.1073/pnas.0407273101
89.
89. A. E. van Giessen and J. E. Straub, J. Chem. Phys. 122, 024904 (2005).
http://dx.doi.org/10.1063/1.1833354
90.
90. F. Ding, S. V. Buldyrev, and N. V. Dokholyan, Biophys. J. 88, 147 (2005).
http://dx.doi.org/10.1529/biophysj.104.046375
91.
91. N. Y. Chen, Z. Y. Su, and C. Y. Mou, Phys. Rev. Lett. 96, 078103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.078103
92.
92. Y. Mu and Y. Q. Gao, J. Chem. Phys. 127, 105102 (2007).
http://dx.doi.org/10.1063/1.2768062
93.
93. T. Bereau and M. Deserno, J. Chem. Phys. 130, 235106 (2009).
http://dx.doi.org/10.1063/1.3152842
94.
94. M. Cheon, I. Chang, and C. K. Hall, Proteins 78, 2950 (2010).
http://dx.doi.org/10.1002/prot.22817
95.
95. Y. Chebaro, S. Pasquali, and P. Derreumaux, J. Phys. Chem. B 116, 8741 (2012).
http://dx.doi.org/10.1021/jp301665f
96.
96. P. Doruker, R. L. Jernigan, and I. Bahar, J. Comput. Chem. 23, 119 (2002).
http://dx.doi.org/10.1002/jcc.1160
97.
97. J.-W. Chu and G. A. Voth, Biophys. J. 90, 1572 (2006).
http://dx.doi.org/10.1529/biophysj.105.073924
98.
98. M. Hagan and D. Chandler, Biophys. J. 91, 42 (2006).
http://dx.doi.org/10.1529/biophysj.105.076851
99.
99. H. D. Nguyen, V. S. Reddy, and C. L. Brooks III, Nano Lett. 7, 338 (2007).
http://dx.doi.org/10.1021/nl062449h
100.
100. Q. Wang and M. S. Cheung, Biophys. J. 102, 2353 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.04.010
101.
101. D. Sept and F. C. MacKintosh, Phys. Rev. Lett. 104, 018101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.018101
102.
102. T. Head-Gordon and S. Brown, Curr. Opin. Struct. Biol. 13, 160 (2003).
http://dx.doi.org/10.1016/S0959-440X(03)00030-7
103.
103. V. Tozzini, Curr. Opin. Struct. Biol. 15, 144 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.02.005
104.
104. V. Tozzini, Quart. Rev. Biophys. 43, 333 (2010).
http://dx.doi.org/10.1017/S0033583510000132
105.
105. C. Wu and J.-E. Shea, Curr. Opin. Struct. Biol. 21, 209 (2011).
http://dx.doi.org/10.1016/j.sbi.2011.02.002
106.
106. M. Rubinstein and R. Colby, Polymer Physics (Oxford University Press, 2003).
107.
107. T. Schlick, Curr. Opin. Struct. Biol. 5, 245 (1995).
http://dx.doi.org/10.1016/0959-440X(95)80083-2
108.
108. W. K. Olson, Curr. Opin. Struct. Biol. 6, 242 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80082-0
109.
109. W. K. Olson and V. B. Zhurkin, Curr. Opin. Struct. Biol. 10, 286 (2000).
http://dx.doi.org/10.1016/S0959-440X(00)00086-5
110.
110. H. L. Tepper and G. A. Voth, J. Chem. Phys. 122, 124906 (2005).
http://dx.doi.org/10.1063/1.1869417
111.
111. E. Villa, A. Balaeff, L. Mahadevan, and K. Schulten, Multiscale Model. Simul. 2, 527 (2004).
http://dx.doi.org/10.1137/040604789
112.
112. F. W. Starr and F. Sciortino, J. Phys.: Condens. Matter 18, L347 (2006).
http://dx.doi.org/10.1088/0953-8984/18/26/L02
113.
113. F. Trovato and V. Tozzini, J. Phys. Chem. B 112, 13197 (2008).
http://dx.doi.org/10.1021/jp807085d
114.
114. K. Doi, T. Haga, H. Shintaku, and S. Kawano, Philos. Trans. R. Soc. London, Ser. A 368, 2615 (2010).
http://dx.doi.org/10.1098/rsta.2010.0068
115.
115. A. Savelyev and G. A. Papoian, Biophys. J. 96, 4044 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.02.067
116.
116. A. Savelyev and G. A. Papoian, Proc. Natl. Acad. Sci. U.S.A. 107, 20340 (2010).
http://dx.doi.org/10.1073/pnas.1001163107
117.
117. M. Sayar, B. c. Avşaroğlu, and A. Kabakçıoğlu, Phys. Rev. E 81, 041916 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.041916
118.
118. K. Drukker, G. Wu, and G. C. Schatz, J. Chem. Phys. 114, 579 (2001).
http://dx.doi.org/10.1063/1.1329137
119.
119. M. Sales-Pardo, R. Guimerà, A. A. Moreira, J. Widom, and L. A. N. Amaral, Phys. Rev. E 71, 051902 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.051902
120.
120. E. Sambriski, D. Schwartz, and J. de Pablo, Biophys. J. 96, 1675 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.09.061
121.
121. T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.178101
122.
122. T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011).
http://dx.doi.org/10.1063/1.3552946
123.
123. T. A. Knotts IV, N. Rathore, D. C. Schwartz, and J. J. de Pablo, J. Chem. Phys. 126, 084901 (2007).
http://dx.doi.org/10.1063/1.2431804
124.
124. M. C. Linak, R. Tourdot, and K. D. Dorfman, J. Chem. Phys. 135, 205102 (2011).
http://dx.doi.org/10.1063/1.3662137
125.
125. A. Morriss-Andrews, J. Rottler, and S. S. Plotkin, J. Chem. Phys. 132, 035105 (2010).
http://dx.doi.org/10.1063/1.3269994
126.
126. B. Mergell, M. R. Ejtehadi, and R. Everaers, Phys. Rev. E 68, 021911 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.021911
127.
127. P. Sulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, and A. A. Louis, J. Chem. Phys. 137, 135101 (2012).
http://dx.doi.org/10.1063/1.4754132
128.
128. F. Zhang and M. A. Collins, Phys. Rev. E 52, 4217 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.4217
129.
129. S. Khalid, P. J. Bond, J. Holyoake, R. W. Hawtin, and M. S. Sansom, J. R. Soc., Interface 5, 241 (2008).
http://dx.doi.org/10.1098/rsif.2008.0239.focus
130.
130. P. D. Dans, A. Zeida, M. R. Machado, and S. Pantano, J. Chem. Theory Comput. 6, 1711 (2010).
http://dx.doi.org/10.1021/ct900653p
131.
131. P. Poulain, A. Saladin, B. Hartmann, and C. Prévost, J. Comput. Chem. 29, 2582 (2008).
http://dx.doi.org/10.1002/jcc.21014
132.
132. P. Setny, R. P. Bahadur, and M. Zacharias, BMC Bioinf. 13, 228 (2012).
http://dx.doi.org/10.1186/1471-2105-13-228
133.
133. C. Hyeon and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 102, 6789 (2005).
http://dx.doi.org/10.1073/pnas.0408314102
134.
134. M. Paliy, R. Melnik, and B. A. Shapiro, Phys. Biol. 7, 036001 (2010).
http://dx.doi.org/10.1088/1478-3975/7/3/036001
135.
135. F. Ding, S. Sharma, P. Chalasani, V. V. Demidov, N. E. Broude, and N. V. Dokholyan, RNA 14, 1164 (2008).
http://dx.doi.org/10.1261/rna.894608
136.
136. Z. Xia, D. P. Gardner, R. R. Gutell, and P. Ren, J. Phys. Chem. B 114, 13497 (2010).
http://dx.doi.org/10.1021/jp104926t
137.
137. S. Pasquali and P. Derreumaux, J. Phys. Chem. B 114, 11957 (2010).
http://dx.doi.org/10.1021/jp102497y
138.
138. P. Setny and M. Zacharias, Nucleic Acids Res. 39, 9118 (2011).
http://dx.doi.org/10.1093/nar/gkr636
139.
139. M. A. Jonikas, R. J. Radmer, A. Laederach, R. Das, S. Pearlman, D. Herschlag, and R. B. Altman, RNA 15, 189 (2009).
http://dx.doi.org/10.1261/rna.1270809
140.
140. C. Hyeon and D. Thirumalai, Biophys. J. 92, 731 (2007).
http://dx.doi.org/10.1529/biophysj.106.093062
141.
141. S. C. Harvey, A. S. Petrov, B. Devkota, and M. B. Boz, Methods Enzymol. 487, 513 (2011).
http://dx.doi.org/10.1016/B978-0-12-381270-4.00018-4
142.
142. J. J. de Pablo, Annu. Rev. Phys. Chem. 62, 555 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103458
143.
143. D. A. Potoyan, A. Savelyev, and G. A. Papoian, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 69 (2013).
http://dx.doi.org/10.1002/wcms.1114
144.
144. Z. Xia and P. Ren, “Prediction and coarse-grained modeling of RNA structures,” Biophysics of RNA Folding (Springer, 2013), Chap. 4.
145.
145. K. A. Dill, Biochemistry 29, 7133 (1990).
http://dx.doi.org/10.1021/bi00483a001
146.
146. K. M. Guckian, B. A. Schweitzer, R. X.-F. Ren, C. J. Sheils, D. C. Tahmassebi, and E. T. Kool, J. Am. Chem. Soc. 122, 2213 (2000).
http://dx.doi.org/10.1021/ja9934854
147.
147. T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98, 3313 (1993).
http://dx.doi.org/10.1063/1.464103
148.
148. S. Garde and H. S. Ashbaugh, J. Chem. Phys. 115, 977 (2001).
http://dx.doi.org/10.1063/1.1379576
149.
149. R. M. Lynden-Bell and T. Head-Gordon, Mol. Phys. 104, 3593 (2006).
http://dx.doi.org/10.1080/00268970601022727
150.
150. M. E. Johnson, T. Head-Gordon, and A. A. Louis, J. Chem. Phys. 126, 144509 (2007).
http://dx.doi.org/10.1063/1.2715953
151.
151. A. Chaimovich and M. S. Shell, Phys. Chem. Chem. Phys. 11, 1901 (2009).
http://dx.doi.org/10.1039/b818512c
152.
152. H. Wang, C. Junghans, and K. Kremer, Eur. Phys. J. E 28, 221 (2009).
http://dx.doi.org/10.1140/epje/i2008-10413-5
153.
153. Y. Liu and T. Ichiye, J. Phys. Chem. 100, 2723 (1996).
http://dx.doi.org/10.1021/jp952324t
154.
154. M.-L. Tan, J. T. Fischer, A. Chandra, B. R. Brooks, and T. Ichiye, Chem. Phys. Lett. 376, 646 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01044-3
155.
155. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
156.
156. E. B. Moore and V. Molinero, Nature (London) 479, 506 (2011).
http://dx.doi.org/10.1038/nature10586
157.
157. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5262
158.
158. M. Orsi, J. Michel, and J. W. Essex, J. Phys.: Condens. Matter 22, 155106 (2010).
http://dx.doi.org/10.1088/0953-8984/22/15/155106
159.
159. R. C. DeMille, T. E. Cheatham, and V. Molinero, J. Phys. Chem. B 115, 132 (2011).
http://dx.doi.org/10.1021/jp107028n
160.
160. L. Darré, M. R. Machado, P. D. Dans, F. E. Herrera, and S. Pantano, J. Chem. Theory Comput. 6, 3793 (2010).
http://dx.doi.org/10.1021/ct100379f
161.
161. T. HaDuong, S. Phan, M. Marchi, and D. Borgis, J. Chem. Phys. 117, 541 (2002).
http://dx.doi.org/10.1063/1.1481858
162.
162. J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and M. L. Klein, J. Phys. Chem. B 105, 4464 (2001).
http://dx.doi.org/10.1021/jp010238p
163.
163. S. J. Marrink, A. H. de Vries, and A. E. Mark, J. Phys. Chem. B 108, 750 (2004).
http://dx.doi.org/10.1021/jp036508g
164.
164. B. van Hoof, A. J. Markvoort, R. A. van Santen, and P. A. J. Hilbers, J. Phys. Chem. B 115, 10001 (2011).
http://dx.doi.org/10.1021/jp201975m
165.
165. K. R. Hadley and C. McCabe, J. Phys. Chem. B 114, 4590 (2010).
http://dx.doi.org/10.1021/jp911894a
166.
166. S. J. Marrink, X. Periole, D. P. Tieleman, and A. H. de Vries, Phys. Chem. Chem. Phys. 12, 2254 (2010).
http://dx.doi.org/10.1039/b915293h
167.
167. E. G. Flekkøy and P. V. Coveney, Phys. Rev. Lett. 83, 1775 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1775
168.
168. A. Eriksson, M. N. Jacobi, J. Nyström, and K. Tunstrøm, Europhys. Lett. 86, 44001 (2009).
http://dx.doi.org/10.1209/0295-5075/86/44001
169.
169. H. Bock, K. E. Gubbins, and S. H. L. Klapp, Phys. Rev. Lett. 98, 267801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.267801
170.
170. M. Winger, D. Trzesniak, R. Baron, and W. F. van Gunsteren, Phys. Chem. Chem. Phys. 11, 1934 (2009).
http://dx.doi.org/10.1039/B818713D
171.
171. S. O. Yesylevskyy, L. V. Schafer, D. Sengupta, and S. J. Marrink, PLOS Comput. Biol. 6, e1000810 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000810
172.
172. S. Riniker and W. F. van Gunsteren, J. Chem. Phys. 134, 084110 (2011).
http://dx.doi.org/10.1063/1.3553378
173.
173. M. Masella, D. Borgis, and P. Cuniasse, J. Comput. Chem. 29, 1707 (2008).
http://dx.doi.org/10.1002/jcc.20932
174.
174. M. Masella, D. Borgis, and P. Cuniasse, J. Comput. Chem. 32, 2664 (2011).
http://dx.doi.org/10.1002/jcc.21846
175.
175. Z. Wu, Q. A. Cui, and A. Yethiraj, J. Phys. Chem. B 114, 10524 (2010).
http://dx.doi.org/10.1021/jp1019763
176.
176. Z. Wu, Q. Cui, and A. Yethiraj, J. Phys. Chem. Lett. 2, 1794 (2011).
http://dx.doi.org/10.1021/jz2006622
177.
177. R. Baron and V. Molinero, J. Chem. Theory Comput. 8, 3696 (2012).
http://dx.doi.org/10.1021/ct300121r
178.
178. X. Chu, Y. Wang, L. Gan, Y. Bai, W. Han, E. Wang, and J. Wang, PLOS Comput. Biol. 8, e1002608 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002608
179.
179. Y. Levy, J. N. Onuchic, and P. G. Wolynes, J. Am. Chem. Soc. 129, 738 (2007).
http://dx.doi.org/10.1021/ja065531n
180.
180. I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.011506
181.
181. S. Izvekov and G. A. Voth, J. Phys. Chem. B 113, 4443 (2009).
http://dx.doi.org/10.1021/jp810440c
182.
182. Z. J. Wang and M. Deserno, J. Phys. Chem. B 114, 11207 (2010).
http://dx.doi.org/10.1021/jp102543j
183.
183. M. Makowski, A. Liwo, and H. A. Scheraga, J. Phys. Chem. B 111, 2910 (2007).
http://dx.doi.org/10.1021/jp065916s
184.
184. J. Chen, C. L. Brooks III, and J. Khandogin, Curr. Opin. Struct. Biol. 18, 140 (2008).
http://dx.doi.org/10.1016/j.sbi.2008.01.003
185.
185. P. Grochowski and J. Trylska, Biopolymers 89, 93 (2008).
http://dx.doi.org/10.1002/bip.20877
186.
186. L. Darré, M. R. Machado, and S. Pantano, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 921 (2012).
http://dx.doi.org/10.1002/wcms.1097
187.
187. K. R. Hadley and C. McCabe, Mol. Simul. 38, 671 (2012).
http://dx.doi.org/10.1080/08927022.2012.671942
188.
188. K. A. Dill, T. M. Truskett, V. Vlachy, and B. Hribar-Lee, Annu. Rev. Biophys. Biomol. Struct. 34, 173 (2005).
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144517
189.
189. D. Chandler, Nature (London) 437, 640 (2005).
http://dx.doi.org/10.1038/nature04162
190.
190. F. Schmid, Macromol. Rapid Commun. 30, 741 (2009).
http://dx.doi.org/10.1002/marc.200800750
191.
191. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, 1985).
192.
192. J. Drouffe, A. Maggs, and S. Leibler, Science 254, 1353 (1991).
http://dx.doi.org/10.1126/science.1962193
193.
193. F. A. Detcheverry, D. Q. Pike, U. Nagpal, P. F. Nealey, and J. J. de Pablo, Soft Matter 5, 4858 (2009).
http://dx.doi.org/10.1039/b911646j
194.
194. M. Homberg and M. Muller, J. Chem. Phys. 132, 155104 (2010).
http://dx.doi.org/10.1063/1.3369005
195.
195. R. Pellarin, E. Guarnera, and A. Caflisch, J. Mol. Biol. 374, 917 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.09.090
196.
196. G. Bellesia and J.-E. Shea, J. Chem. Phys. 130, 145103 (2009).
http://dx.doi.org/10.1063/1.3108461
197.
197. H. S. Chan and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 87, 6388 (1990).
http://dx.doi.org/10.1073/pnas.87.16.6388
198.
198. M. J. Stevens, Biophys. J. 80, 130 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76000-6
199.
199. W. Shinoda, R. Devane, and M. L. Klein, Mol. Simul. 33, 27 (2007).
http://dx.doi.org/10.1080/08927020601054050
200.
200. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, J. Phys. Chem. B 111, 7812 (2007).
http://dx.doi.org/10.1021/jp071097f
201.
201. D. H. de Jong, G. Singh, W. F. D. Bennett, C. Arnarez, T. A. Wassenaar, L. V. Schäfer, X. Periole, D. P. Tieleman, and S. J. Marrink, J. Chem. Theory Comput. 9, 687 (2013).
http://dx.doi.org/10.1021/ct300646g
202.
202. S. J. Marrink and D. P. Tieleman, Chem. Soc. Rev. 42, 68016822 (2013).
http://dx.doi.org/10.1039/c3cs60093a
203.
203. L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008).
http://dx.doi.org/10.1021/ct700324x
204.
204. K. A. Maerzke and J. I. Siepmann, J. Phys. Chem. B 115, 3452 (2011).
http://dx.doi.org/10.1021/jp1063935
205.
205. M. Seo, S. Rauscher, R. Pomès, and D. P. Tieleman, J. Chem. Theory Comput. 8, 1774 (2012).
http://dx.doi.org/10.1021/ct200876v
206.
206. X. Periole, M. Cavalli, S. J. Marrink, and M. A. Ceruso, J. Chem. Theory Comput. 5, 2531 (2009).
http://dx.doi.org/10.1021/ct9002114
207.
207. R. DeVane, W. Shinoda, P. B. Moore, and M. L. Klein, J. Chem. Theory Comput. 5, 2115 (2009).
http://dx.doi.org/10.1021/ct800441u
208.
208. R. Zwanzig, Phys. Rev. 124, 983 (1961).
http://dx.doi.org/10.1103/PhysRev.124.983
209.
209. C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010).
http://dx.doi.org/10.1039/b902479b
210.
210. J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
http://dx.doi.org/10.1063/1.1749657
211.
211. A. Liwo, R. Kaźmierkiewicz, C. Czaplewski, M. Groth, S. Ołdziej, R. J. Wawak, S. Rackovsky, M. R. Pincus, and H. A. Scheraga, J. Comput. Chem. 19, 259 (1998).
http://dx.doi.org/10.1002/(SICI)1096-987X(199802)19:3<259::AID-JCC1>3.0.CO;2-S
212.
212. C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
213.
213. W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. 128, 244114 (2008).
http://dx.doi.org/10.1063/1.2938860
214.
214. R. L. C. Akkermans and W. J. Briels, J. Chem. Phys. 113, 6409 (2000).
http://dx.doi.org/10.1063/1.1308513
215.
215. H. S. Chan and K. A. Dill, Annu. Rev. Biophys. Biophys. Chem. 20, 447 (1991).
http://dx.doi.org/10.1146/annurev.bb.20.060191.002311
216.
216. A. A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002).
http://dx.doi.org/10.1088/0953-8984/14/40/311
217.
217. F. H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys. 117, 288 (2002).
http://dx.doi.org/10.1063/1.1480863
218.
218. Free Energy Calculations: Theory and Applications in Chemistry and Biology, edited by C. Chipot and A. Pohorille (Springer, 2007), Vol. 86.
219.
219. C. D. Christ, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem. 31, 1569 (2010).
http://dx.doi.org/10.1002/jcc.21450
220.
220. R. K. Pathria, Statistical Mechanics, 2nd ed. (Elsevier, 1996).
221.
221. H. Berman, K. Henrick, and H. Nakamura, Nat. Struct. Mol. Biol. 10, 980 (2003).
http://dx.doi.org/10.1038/nsb1203-980
222.
222. S. Tanaka and H. A. Scheraga, Macromolecules 9, 945 (1976).
http://dx.doi.org/10.1021/ma60054a013
223.
223. M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1905
225.
225. A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin, and I. Bahar, Biophys. J. 80, 505 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76033-X
226.
226. P. J. Flory, M. Gordon, and N. G. McCrum, Proc. R. Soc. London, Ser. A 351, 351 (1976).
http://dx.doi.org/10.1098/rspa.1976.0146
227.
227. I. Bahar, A. R. Atilgan, and B. Erman, Folding Des. 2, 173 (1997).
http://dx.doi.org/10.1016/S1359-0278(97)00024-2
228.
228. S. Kundu, J. S. Melton, D. C. Sorensen, and G. N. Phillips, Biophys. J. 83, 723 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75203-X
229.
229. D. Riccardi, Q. Cui, and G. N. Phillips, Biophys. J. 96, 464 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.10.010
230.
230. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen, Proteins 17, 412 (1993).
http://dx.doi.org/10.1002/prot.340170408
231.
231. M. Rueda, P. Chacón, and M. Orozco, Structure 15, 565 (2007).
http://dx.doi.org/10.1016/j.str.2007.03.013
232.
232. Y. Suezaki and N. Go, Int. J. Pept. Protein Res. 7, 333 (1975).
http://dx.doi.org/10.1111/j.1399-3011.1975.tb02448.x
233.
233. B. Halle, Proc. Natl. Acad. Sci. U.S.A. 99, 1274 (2002).
http://dx.doi.org/10.1073/pnas.032522499
234.
234. M. Lu and J. Ma, Biophys. J. 89, 2395 (2005).
http://dx.doi.org/10.1529/biophysj.105.065904
235.
235. K. Hinsen, A.-J. Petrescu, S. Dellerue, M.-C. Bellissent-Funel, and G. R. Kneller, Chem. Phys. 261, 25 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00222-6
236.
236. J. A. Kovacs, P. Chacón, and R. Abagyan, Proteins 56, 661 (2004).
http://dx.doi.org/10.1002/prot.20151
237.
237. K. Hinsen, Proc. Natl. Acad. Sci. U.S.A. 106, E128 (2009).
http://dx.doi.org/10.1073/pnas.0909385106
238.
238. J.-W. Chu and G. A. Voth, Proc. Natl. Acad. Sci. U.S.A. 102, 13111 (2005).
http://dx.doi.org/10.1073/pnas.0503732102
239.
239. K. Moritsugu and J. C. Smith, Biophys. J. 93, 3460 (2007).
http://dx.doi.org/10.1529/biophysj.107.111898
240.
240. T. R. Lezon and I. Bahar, PLOS Comput. Biol. 6, e1000816 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000816
241.
241. T. Z. Sen, Y. P. Feng, J. V. Garcia, A. Kloczkowski, and R. L. Jernigan, J. Chem. Theory Comput. 2, 696 (2006).
http://dx.doi.org/10.1021/ct600060d
242.
242. O. Kurkcuoglu, O. T. Turgut, S. Cansu, R. L. Jernigan, and P. Doruker, Biophys. J. 97, 1178 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.06.009
243.
243. K. Eom, S.-C. Baek, J.-H. Ahn, and S. Na, J. Comput. Chem. 28, 1400 (2007).
http://dx.doi.org/10.1002/jcc.20672
244.
244. E. Lyman, J. Pfaendtner, and G. A. Voth, Biophys. J. 95, 4183 (2008).
http://dx.doi.org/10.1529/biophysj.108.139733
245.
245. C. Chennubhotla and I. Bahar, J. Comput. Biol. 14, 765 (2007).
http://dx.doi.org/10.1089/cmb.2007.R015
246.
246. M. K. Kim, G. S. Chirikjian, and R. L. Jernigan, J. Mol. Graphics Modell. 21, 151 (2002).
http://dx.doi.org/10.1016/S1093-3263(02)00143-2
247.
247. O. Miyashita, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 100, 12570 (2003).
http://dx.doi.org/10.1073/pnas.2135471100
248.
248. P. Maragakis and M. Karplus, J. Mol. Biol. 352, 807 (2005).
http://dx.doi.org/10.1016/j.jmb.2005.07.031
249.
249. J. W. Chu and G. A. Voth, Biophys. J. 93, 3860 (2007).
http://dx.doi.org/10.1529/biophysj.107.112060
250.
250. Z. Yang, P. Májek, and I. Bahar, PLOS Comput. Biol. 5, e1000360 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000360
251.
251. W. J. Zheng, B. R. Brooks, and G. Hummer, Proteins 69, 43 (2007).
http://dx.doi.org/10.1002/prot.21465
252.
252. R. Soheilifard, D. E. Makarov, and G. J. Rodin, Phys. Biol. 5, 026008 (2008).
http://dx.doi.org/10.1088/1478-3975/5/2/026008
253.
253. M. Lu and J. Ma, Proc. Natl. Acad. Sci. U.S.A. 105, 15358 (2008).
http://dx.doi.org/10.1073/pnas.0806072105
254.
254. G. Song and R. L. Jernigan, J. Mol. Biol. 369, 880 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.03.059
255.
255. K. Hinsen, Bioinformatics 24, 521 (2008).
http://dx.doi.org/10.1093/bioinformatics/btm625
256.
256. J. Hafner and W. Zheng, J. Chem. Phys. 132, 014111 (2010).
http://dx.doi.org/10.1063/1.3288503
257.
257. W. Zheng and B. R. Brooks, Biophys. J. 89, 167 (2005).
http://dx.doi.org/10.1529/biophysj.105.063305
258.
258. F. Tama, O. Miyashita, and C. L. Brooks III, J. Mol. Biol. 337, 985 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.01.048
259.
259. C. Gorba, O. Miyashita, and F. Tama, Biophys. J. 94, 1589 (2008).
http://dx.doi.org/10.1529/biophysj.107.122218
260.
260. B. K. Poon, X. Chen, M. Lu, N. K. Vyas, F. A. Quiocho, Q. Wang, and J. Ma, Proc. Natl. Acad. Sci. U.S.A. 104, 7869 (2007).
http://dx.doi.org/10.1073/pnas.0701204104
261.
261. F. Tama and C. L. Brooks III, J. Mol. Biol. 345, 299 (2005).
http://dx.doi.org/10.1016/j.jmb.2004.10.054
262.
262. W. Zheng, B. R. Brooks, and D. Thirumalai, Biophys. J. 93, 2289 (2007).
http://dx.doi.org/10.1529/biophysj.107.105270
263.
263. R. Tehver, J. Chen, and D. Thirumalai, J. Mol. Biol. 387, 390 (2009).
http://dx.doi.org/10.1016/j.jmb.2008.12.032
264.
264. D. Ming and M. E. Wall, Phys. Rev. Lett. 95, 198103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.198103
265.
265. Y. Wang, A. Rader, I. Bahar, and R. L. Jernigan, J. Struct. Biol. 147, 302 (2004).
http://dx.doi.org/10.1016/j.jsb.2004.01.005
266.
266. F. Tama, M. Valle, J. Frank, and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 100, 9319 (2003).
http://dx.doi.org/10.1073/pnas.1632476100
267.
267. F. Tama and Y.-H. Sanejouand, Protein Eng. 14, 1 (2001).
http://dx.doi.org/10.1093/protein/14.1.1
268.
268. W. Zheng and S. Doniach, Proc. Natl. Acad. Sci. U.S.A. 100, 13253 (2003).
http://dx.doi.org/10.1073/pnas.2235686100
269.
269. C. N. Cavasotto, J. A. Kovacs, and R. A. Abagyan, J. Am. Chem. Soc. 127, 9632 (2005).
http://dx.doi.org/10.1021/ja042260c
270.
270. A. May and M. Zacharias, Proteins 70, 794 (2008).
http://dx.doi.org/10.1002/prot.21579
271.
271. D. Schneidman-Duhovny, R. Nussinov, and H. J. Wolfson, Proteins 69, 764 (2007).
http://dx.doi.org/10.1002/prot.21759
272.
272. K. Suhre and Y.-H. Sanejouand, Nucleic Acids Res. 32, W610 (2004).
http://dx.doi.org/10.1093/nar/gkh368
273.
273. E. Eyal, L.-W. Yang, and I. Bahar, Bioinformatics 22, 2619 (2006).
http://dx.doi.org/10.1093/bioinformatics/btl448
274.
274. E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, Nucleic Acids Res. 34, W52 (2006).
http://dx.doi.org/10.1093/nar/gkl082
275.
275. M. T. Zimmermann, A. Kloczkowski, and R. L. Jernigan, BMC Bioinf. 12, 264 (2011).
http://dx.doi.org/10.1186/1471-2105-12-264
276.
276. I. Bahar, T. R. Lezon, A. Bakan, and I. H. Shrivastava, Chem. Rev. 110, 1463 (2010).
http://dx.doi.org/10.1021/cr900095e
277.
277. F. Tama and C. L. Brooks, Annu. Rev. Biophys. Biomol. Struct. 35, 115 (2006).
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102010
278.
278. L.-W. Yang and C.-P. Chng, Bioinf. Biol. Insight 2, 25 (2008).
279.
279. H. Taketomi, Y. Ueda, and N. Go, Int. J. Pept. Protein Res. 7, 445 (1975).
http://dx.doi.org/10.1111/j.1399-3011.1975.tb02465.x
280.
280. H. Kaya and H. Chan, J. Mol. Biol. 326, 911 (2003).
http://dx.doi.org/10.1016/S0022-2836(02)01434-1
281.
281. H. Nymeyer, A. Garcia, and J. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 95, 5921 (1998).
http://dx.doi.org/10.1073/pnas.95.11.5921
282.
282. N. Go, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).
http://dx.doi.org/10.1146/annurev.bb.12.060183.001151
283.
283. J. Bryngelson and P. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 84, 7524 (1987).
http://dx.doi.org/10.1073/pnas.84.21.7524
284.
284. J. Bryngelson, J. Onuchic, N. Socci, and P. Wolynes, Proteins 21, 167 (1995).
http://dx.doi.org/10.1002/prot.340210302
285.
285. B. C. Gin, J. P. Garrahan, and P. L. Geissler, J. Mol. Biol. 392, 1303 (2009).
http://dx.doi.org/10.1016/j.jmb.2009.06.058
286.
286. P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 89, 8721 (1992).
http://dx.doi.org/10.1073/pnas.89.18.8721
287.
287. N. D. Socci, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys. 104, 5860 (1996).
http://dx.doi.org/10.1063/1.471317
288.
288. K. A. Dill and H. S. Chan, Nat. Struct. Biol. 4, 10 (1997).
http://dx.doi.org/10.1038/nsb0197-10
289.
289. C. Clementi, P. Jennings, and J. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 97, 5871 (2000).
http://dx.doi.org/10.1073/pnas.100547897
290.
290. C. Clementi, H. Nymeyer, and J. Onuchic, J. Mol. Biol. 298, 937 (2000).
http://dx.doi.org/10.1006/jmbi.2000.3693
291.
291. N. Koga and S. Takada, J. Mol. Biol. 313, 171 (2001).
http://dx.doi.org/10.1006/jmbi.2001.5037
292.
292. J.-E. Shea, J. N. Onuchic, and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 99, 16064 (2002).
http://dx.doi.org/10.1073/pnas.242293099
293.
293. T. X. Hoang and M. Cieplak, J. Chem. Phys. 113, 8319 (2000).
http://dx.doi.org/10.1063/1.1314868
294.
294. S. Takada, Proc. Natl. Acad. Sci. U.S.A. 96, 11698 (1999).
http://dx.doi.org/10.1073/pnas.96.21.11698
295.
295. L. Wroblewska, A. Jagielska, and J. Skolnick, Biophys. J. 94, 3227 (2008).
http://dx.doi.org/10.1529/biophysj.107.121947
296.
296. A. Raval, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, Proteins 80, 2071 (2012).
http://dx.doi.org/10.1002/prot.24098
297.
297. K. W. Plaxco, K. T. Simons, and D. Baker, J. Mol. Biol. 277, 985 (1998).
http://dx.doi.org/10.1006/jmbi.1998.1645
298.
298. K. Gunasekaran, S. Eyles, A. Hagler, and L. Gierasch, Curr. Opin. Struct. Biol. 11, 83 (2001).
http://dx.doi.org/10.1016/S0959-440X(00)00173-1
299.
299. E. Miller, K. Fischer, and S. Marqusee, Proc. Natl. Acad. Sci. U.S.A. 99, 10359 (2002).
http://dx.doi.org/10.1073/pnas.162219099
300.
300. L. Mirny and E. Shakhnovich, Annu. Rev. Biophys. Biomol. Struct. 30, 361 (2001).
http://dx.doi.org/10.1146/annurev.biophys.30.1.361
301.
301. J. Shimada and E. Shakhnovich, Proc. Natl. Acad. Sci. U.S.A. 99, 11175 (2002).
http://dx.doi.org/10.1073/pnas.162268099
302.
302. C. Clementi, A. Garcia, and J. Onuchic, J. Mol. Biol. 326, 933 (2003).
http://dx.doi.org/10.1016/S0022-2836(02)01379-7
303.
303. J. Karanicolas and C. Brooks III, Protein Sci. 11, 2351 (2002).
http://dx.doi.org/10.1110/ps.0205402
304.
304. M. Cheung, A. Garcia, and J. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 99, 685 (2002).
http://dx.doi.org/10.1073/pnas.022387699
305.
305. C. Clementi and S. S. Plotkin, Protein Sci. 13, 1750 (2004).
http://dx.doi.org/10.1110/ps.03580104
306.
306. P. Das, S. Matysiak, and C. Clementi, Proc. Natl. Acad. Sci. U.S.A. 102, 10141 (2005).
http://dx.doi.org/10.1073/pnas.0409471102
307.
307. Z. Zhang and H. S. Chan, Proc. Natl. Acad. Sci. U.S.A. 107, 2920 (2010).
http://dx.doi.org/10.1073/pnas.0911844107
308.
308. M. R. Ejtehadi, S. P. Avall, and S. S. Plotkin, Proc. Natl. Acad. Sci. U.S.A. 101, 15088 (2004).
http://dx.doi.org/10.1073/pnas.0403486101
309.
309. A. Badasyan, Z. Liu, and H. S. Chan, J. Mol. Biol. 384, 512 (2008).
http://dx.doi.org/10.1016/j.jmb.2008.09.023
310.
310. D. Zuckerman, J. Phys. Chem. B 108, 5127 (2004).
http://dx.doi.org/10.1021/jp0370730
311.
311. R. Best, Y. Chen, and G. Hummer, Structure 13, 1755 (2005).
http://dx.doi.org/10.1016/j.str.2005.08.009
312.
312. K.-i. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 103, 11844 (2006).
http://dx.doi.org/10.1073/pnas.0604375103
313.
313. E. P. O'Brien, G. Ziv, G. Haran, B. R. Brooks, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 105, 13403 (2008).
http://dx.doi.org/10.1073/pnas.0802113105
314.
314. A. Linhananta, S. Hadizadeh, and S. S. Plotkin, Biophys. J. 100, 459 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.11.087
315.
315. Z. Liu, G. Reddy, and D. Thirumalai, J. Phys. Chem. B 116, 6707 (2012).
http://dx.doi.org/10.1021/jp211941b
316.
316. S. Matysiak and C. Clementi, J. Mol. Biol. 343, 235 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.08.006
317.
317. C. Hyeon, G. H. Lorimer, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 103, 18939 (2006).
http://dx.doi.org/10.1073/pnas.0608759103
318.
318. N. Koga, T. Kameda, K.-i. Okazaki, and S. Takada, Proc. Natl. Acad. Sci. U.S.A. 106, 18237 (2009).
http://dx.doi.org/10.1073/pnas.0904756106
319.
319. F. Takagi, N. Koga, and S. Takada, Proc. Natl. Acad. Sci. U.S.A. 100, 11367 (2003).
http://dx.doi.org/10.1073/pnas.1831920100
320.
320. D. K. Klimov, D. Newfield, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 99, 8019 (2002).
http://dx.doi.org/10.1073/pnas.072220699
321.
321. M. S. Cheung, D. Klimov, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 102, 4753 (2005).
http://dx.doi.org/10.1073/pnas.0409630102
322.
322. C. Hyeon, R. I. Dima, and D. Thirumalai, Structure 14, 1633 (2006).
http://dx.doi.org/10.1016/j.str.2006.09.002
323.
323. J. I. Sułkowska and M. Cieplak, Biophys. J. 95, 3174 (2008).
http://dx.doi.org/10.1529/biophysj.107.127233
324.
324. Y. Levy, P. Wolynes, and J. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 101, 511 (2004).
http://dx.doi.org/10.1073/pnas.2534828100
325.
325. J. Wang, Q. Lu, and H. P. Lu, PLOS Comput. Biol. 2, e78 (2006).
http://dx.doi.org/10.1371/journal.pcbi.0020078
326.
326. A. G. Turjanski, J. S. Gutkind, R. B. Best, and G. Hummer, PLOS Comput. Biol. 4, e1000060 (2008).
http://dx.doi.org/10.1371/journal.pcbi.1000060
327.
327. S. G. Estacio, C. S. Fernandes, H. Krobath, P. F. N. Faisca, and E. I. Shakhnovich, J. Chem. Phys. 137, 085102 (2012).
http://dx.doi.org/10.1063/1.4747492
328.
328. J. Karanicolas and C. L. Brooks III, J. Mol. Biol. 334, 309 (2003).
http://dx.doi.org/10.1016/j.jmb.2003.09.047
329.
329. J. K. Noel, P. C. Whitford, K. Y. Sanbonmatsu, and J. N. Onuchic, Nucleic Acids Res. 38, W657 (2010).
http://dx.doi.org/10.1093/nar/gkq498
330.
330. R. D. Hills Jr. and C. L. Brooks III, Int. J. Mol. Sci. 10, 889 (2009).
http://dx.doi.org/10.3390/ijms10030889
331.
331. S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985).
http://dx.doi.org/10.1021/ma00145a039
332.
332. S. Miyazawa and R. Jernigan, J. Mol. Biol. 256, 623 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0114
333.
333. I. Bahar and R. Jernigan, J. Mol. Biol. 266, 195 (1997).
http://dx.doi.org/10.1006/jmbi.1996.0758
334.
334. H. Li, C. Tang, and N. S. Wingreen, Phys. Rev. Lett. 79, 765 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.765
335.
335. Y. C. Kim and G. Hummer, J. Mol. Biol. 375, 1416 (2008).
http://dx.doi.org/10.1016/j.jmb.2007.11.063
336.
336. A. Samiotakis, D. Homouz, and M. S. Cheung, J. Chem. Phys. 132, 175101 (2010).
http://dx.doi.org/10.1063/1.3404401
337.
337. M. J. Sippl, J. Mol. Biol. 213, 859 (1990).
http://dx.doi.org/10.1016/S0022-2836(05)80269-4
338.
338. M. J. Sippl, J. Comput.-Aided Mol. Des. 7, 473 (1993).
http://dx.doi.org/10.1007/BF02337562
339.
339. A. V. Finkelstein, A. Y. Badretdinov, and A. M. Gutin, Proteins 23, 142 (1995).
http://dx.doi.org/10.1002/prot.340230204
340.
340. R. L. Jernigan and I. Bahar, Curr. Opin. Struct. Biol. 6, 195 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80075-3
341.
341. F. Melo and E. Feytmans, J. Mol. Biol. 267, 207 (1997).
http://dx.doi.org/10.1006/jmbi.1996.0868
342.
342. H. Lu and J. Skolnick, Proteins 44, 223 (2001).
http://dx.doi.org/10.1002/prot.1087
343.
343. H. Zhou and Y. Zhou, Protein Sci. 11, 2714 (2002).
http://dx.doi.org/10.1110/ps.0217002
344.
344. R. S. DeWitte and E. I. Shakhnovich, J. Am. Chem. Soc. 118, 11733 (1996).
http://dx.doi.org/10.1021/ja960751u
345.
345. H. Gohlke, M. Hendlich, and G. Klebe, J. Mol. Biol. 295, 337 (2000).
http://dx.doi.org/10.1006/jmbi.1999.3371
346.
346. M. Y. Shen and A. Sali, Protein Sci. 15, 2507 (2006).
http://dx.doi.org/10.1110/ps.062416606
347.
347. Y. Dehouck, D. Gilis, and M. Rooman, Biophys. J. 90, 4010 (2006).
http://dx.doi.org/10.1529/biophysj.105.079434
348.
348. Y. Zhou, Y. Duan, Y. Yang, E. Faraggi, and H. Lei, Theor. Chem. Acc. 128, 3 (2011).
http://dx.doi.org/10.1007/s00214-010-0799-2
349.
349. M. R. Betancourt and J. Skolnick, J. Mol. Biol. 342, 635 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.06.091
350.
350. M. R. Betancourt, J. Phys. Chem. B 112, 5058 (2008).
http://dx.doi.org/10.1021/jp076906+
351.
351. N. V. Buchete, J. E. Straub, and D. Thirumalai, J. Chem. Phys. 118, 7658 (2003).
http://dx.doi.org/10.1063/1.1561616
352.
352. N. V. Buchete, J. E. Straub, and D. Thirumalai, Curr. Opin. Struct. Biol. 14, 225 (2004).
http://dx.doi.org/10.1016/j.sbi.2004.03.002
353.
353. S. Miyazawa and R. L. Jernigan, J. Chem. Phys. 122, 024901 (2005).
http://dx.doi.org/10.1063/1.1824012
354.
354. M. Lu, A. D. Dousis, and J. Ma, Protein Sci. 17, 1576 (2008).
http://dx.doi.org/10.1110/ps.035022.108
355.
355. H. Zhou and J. Skolnick, Biophys. J. 101, 2043 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.09.012
356.
356. P. J. Munson and R. K. Singh, Protein Sci. 6, 1467 (1997).
http://dx.doi.org/10.1002/pro.5560060711
357.
357. B. Krishnamoorthy and A. Tropsha, Bioinformatics 19, 1540 (2003).
http://dx.doi.org/10.1093/bioinformatics/btg186
358.
358. X. Li and J. Liang, Proteins 60, 46 (2005).
http://dx.doi.org/10.1002/prot.20438
359.
359. Y. P. Feng, A. Kloczkowski, and R. L. Jernigan, Proteins 68, 57 (2007).
http://dx.doi.org/10.1002/prot.21362
360.
360. P. Thomas and K. Dill, Proc. Natl. Acad. Sci. U.S.A. 93, 11628 (1996).
http://dx.doi.org/10.1073/pnas.93.21.11628
361.
361. S.-Y. Huang and X. Zou, J. Comput. Chem. 27, 1866 (2006).
http://dx.doi.org/10.1002/jcc.20504
362.
362. F. Müller-Plathe, ChemPhysChem 3, 754 (2002).
http://dx.doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
363.
363. E. Kussell, J. Shimada, and E. I. Shakhnovich, Proc. Natl. Acad. Sci. U.S.A. 99, 5343 (2002).
http://dx.doi.org/10.1073/pnas.072665799
364.
364. I. A. Hubner, E. J. Deeds, and E. I. Shakhnovich, Proc. Natl. Acad. Sci. U.S.A. 102, 18914 (2005).
http://dx.doi.org/10.1073/pnas.0502181102
365.
365. J. S. Yang, W. W. Chen, J. Skolnick, and E. I. Shakhnovich, Structure 15, 53 (2007).
http://dx.doi.org/10.1016/j.str.2006.11.010
366.
366. A. Godzik, A. Kolinski, and J. Skolnick, Protein Sci. 4, 2107 (1995).
http://dx.doi.org/10.1002/pro.5560041016
367.
367. J. Skolnick, L. Jaroszewski, A. Kolinski, and A. Godzik, Protein Sci. 6, 676 (1997).
http://dx.doi.org/10.1002/pro.5560060317
368.
368. M. R. Betancourt and D. Thirumalai, Protein Sci. 8, 361 (1999).
http://dx.doi.org/10.1110/ps.8.2.361
369.
369. D. Mohanty, B. N. Dominy, A. Kolinski, C. L. Brooks, and J. Skolnick, Proteins 35, 447 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0134(19990601)35:4<447::AID-PROT8>3.0.CO;2-O
370.
370. M. R. Betancourt, Proteins 76, 72 (2009).
http://dx.doi.org/10.1002/prot.22320
371.
371. R. Samudrala and J. Moult, J. Mol. Biol. 275, 895 (1998).
http://dx.doi.org/10.1006/jmbi.1997.1479
372.
372. S. H. Bryant and C. E. Lawrence, Proteins 16, 92 (1993).
http://dx.doi.org/10.1002/prot.340160110
373.
373. J. Moult, Curr. Opin. Struct. Biol. 7, 194 (1997).
http://dx.doi.org/10.1016/S0959-440X(97)80025-5
374.
374. W. A. Koppensteiner and M. J. Sippl, Biochemistry(Mosc.) 63, 247 (1998).
375.
375. T. Lazaridis and M. Karplus, Curr. Opin. Struct. Biol. 10, 139 (2000).
http://dx.doi.org/10.1016/S0959-440X(00)00063-4
376.
376. S. H. Bryant and C. E. Lawrence, Proteins 9, 108 (1991).
http://dx.doi.org/10.1002/prot.340090205
377.
377. K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, J. Mol. Biol. 268, 209 (1997).
http://dx.doi.org/10.1006/jmbi.1997.0959
378.
378. H. B. Burgi and J. D. Dunitz, Acta Crystallogr., Sect. B: Struct. Sci. 44, 445 (1988).
http://dx.doi.org/10.1107/S010876818800374X
379.
379. E. Eyal, S. Gerzon, V. Potapov, M. Edelman, and V. Sobolev, J. Mol. Biol. 351, 431 (2005).
http://dx.doi.org/10.1016/j.jmb.2005.05.066
380.
380. A. Mozzarelli and G. L. Rossi, Annu. Rev. Biophys. Biomol. Struct. 25, 343 (1996).
http://dx.doi.org/10.1146/annurev.bb.25.060196.002015
381.
381. P. D. Thomas and K. A. Dill, J. Mol. Biol. 257, 457 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0175
382.
382. A. Ben-Naim, J. Chem. Phys. 107, 3698 (1997).
http://dx.doi.org/10.1063/1.474725
383.
383. F. Seno, A. Maritan, and J. R. Banavar, Proteins 30, 244 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0134(19980215)30:3<244::AID-PROT4>3.0.CO;2-K
384.
384. A. A. Kossiakoff, M. Randal, J. Guenot, and C. Eigenbrot, Proteins 14, 65 (1992).
http://dx.doi.org/10.1002/prot.340140108
385.
385. G. L. Butterfoss and J. Hermans, Protein Sci. 12, 2719 (2003).
http://dx.doi.org/10.1110/ps.03273303
386.
386. R. B. Best, K. Lindorff-Larsen, M. A. DePristo, and M. Vendruscolo, Proc. Natl. Acad. Sci. U.S.A. 103, 10901 (2006).
http://dx.doi.org/10.1073/pnas.0511156103
387.
387. O. F. Lange, N. A. Lakomek, C. Fares, G. F. Schroder, K. F. A. Walter, S. Becker, J. Meiler, H. Grubmuller, C. Griesinger, and B. L. de Groot, Science 320, 1471 (2008).
http://dx.doi.org/10.1126/science.1157092
388.
388. J. W. Mullinax and W. G. Noid, Proc. Natl. Acad. Sci. U.S.A. 107, 19867 (2010).
http://dx.doi.org/10.1073/pnas.1006428107
389.
389. Z. Li, Y. Yang, J. Zhan, L. Dai, and Y. Zhou, Annu. Rev. Biophys. 42, 315335 (2013).
http://dx.doi.org/10.1146/annurev-biophys-083012-130315
390.
390. G. Crippen, Biochemistry 30, 4232 (1991).
http://dx.doi.org/10.1021/bi00231a018
391.
391. V. N. Maiorov and G. M. Crippen, J. Mol. Biol. 227, 876 (1992).
http://dx.doi.org/10.1016/0022-2836(92)90228-C
392.
392. R. A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 89, 4918 (1992).
http://dx.doi.org/10.1073/pnas.89.11.4918
393.
393. L. Mirny and E. Shakhnovich, J. Mol. Biol. 264, 1164 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0704
394.
394. M. H. Hao and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 93, 4984 (1996).
http://dx.doi.org/10.1073/pnas.93.10.4984
395.
395. F. Seno, C. Micheletti, A. Maritan, and J. Banavar, Phys. Rev. Lett. 81, 2172 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2172
396.
396. J. G. Saven, J. Chem. Phys. 118, 6133 (2003).
http://dx.doi.org/10.1063/1.1565995
397.
397. F. Seno, A. Trovato, J. R. Banavar, and A. Maritan, Phys. Rev. Lett. 100, 078102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.078102
398.
398. K. T. Simons, I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff, and D. Baker, Proteins 34, 82 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A
399.
399. A. Liwo, P. Arłukowicz, C. Czaplewski, S. Ołdziej, J. Pillardy, and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 99, 1937 (2002).
http://dx.doi.org/10.1073/pnas.032675399
400.
400. Y. Zhang, A. Kolinski, and J. Skolnick, Biophys. J. 85, 1145 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74551-2
401.
401. S. Ołdziej, J. Łagiewka, A. Liwo, C. Czaplewski, M. Chinchio, M. Nanias, and H. A. Scheraga, J. Phys. Chem. B 108, 16950 (2004).
http://dx.doi.org/10.1021/jp040329x
402.
402. J. Skolnick, Curr. Opin. Struct. Biol. 16, 166 (2006).
http://dx.doi.org/10.1016/j.sbi.2006.02.004
403.
403. R. Samudrala and M. Levitt, Protein Sci. 9, 1399 (2000).
http://dx.doi.org/10.1110/ps.9.7.1399
404.
404. J. Tsai, R. Bonneau, A. V. Morozov, B. Kuhlman, C. A. Rohl, and D. Baker, Proteins 53, 76 (2003).
http://dx.doi.org/10.1002/prot.10454
405.
405. C. Keasar and M. Levitt, J. Mol. Biol. 329, 159 (2003).
http://dx.doi.org/10.1016/S0022-2836(03)00323-1
406.
406. J. Maupetit, P. Tuffery, and P. Derreumaux, Proteins 69, 394 (2007).
http://dx.doi.org/10.1002/prot.21505
407.
407. M. Vendruscolo and E. Domany, J. Chem. Phys. 109, 11101 (1998).
http://dx.doi.org/10.1063/1.477748
408.
408. D. Tobi, G. Shafran, N. Linial, and R. Elber, Proteins 40, 71 (2000).
http://dx.doi.org/10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3
409.
409. T. Kortemme, A. V. Morozov, and D. Baker, J. Mol. Biol. 326, 1239 (2003).
http://dx.doi.org/10.1016/S0022-2836(03)00021-4
410.
410. Y. Wu, M. Lu, M. Chen, J. Li, and J. Ma, Protein Sci. 16, 1449 (2007).
http://dx.doi.org/10.1110/ps.072796107
411.
411. J. Skolnick, A. Kolinski, and A. Ortiz, Proteins 38, 3 (2000).
http://dx.doi.org/10.1002/(SICI)1097-0134(20000101)38:1<3::AID-PROT2>3.0.CO;2-S
412.
412. J. I. Sułkowska, F. Morcos, M. Weigt, T. Hwa, and J. N. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 109, 10340 (2012).
http://dx.doi.org/10.1073/pnas.1207864109
413.
413. M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Proc. Natl. Acad. Sci. U.S.A. 106, 6772 (2008).
http://dx.doi.org/10.1073/pnas.0805923106
414.
414. F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina, J. N. Onuchic, T. Hwa, and M. Weigt, Proc. Natl. Acad. Sci. U.S.A. 108, E1293 (2011).
http://dx.doi.org/10.1073/pnas.1111471108
415.
415. D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani, R. Zecchina, and C. Sander, PLoS ONE 6, e28766 (2011).
http://dx.doi.org/10.1371/journal.pone.0028766
416.
416. P. Bradley, K. M. S. Misura, and D. Baker, Science 309, 1868 (2005).
http://dx.doi.org/10.1126/science.1113801
417.
417. L. Kinch, S. Yong Shi, Q. Cong, H. Cheng, Y. Liao, and N. V. Grishin, Proteins 79(Suppl. 10), 59 (2011).
http://dx.doi.org/10.1002/prot.23181
418.
418. D. Xu, J. Zhang, A. Roy, and Y. Zhang, Proteins 79(Suppl. 10), 147 (2011).
http://dx.doi.org/10.1002/prot.23111
419.
419. D. T. Jones, Proteins 45(Suppl. 5), 127 (2001).
http://dx.doi.org/10.1002/prot.1171
420.
420. G. Chikenji, Y. Fujitsuka, and S. Takada, J. Chem. Phys. 119, 6895 (2003).
http://dx.doi.org/10.1063/1.1597474
421.
421. S. Y. Lee and J. Skolnick, Biophys. J. 95, 1956 (2008).
http://dx.doi.org/10.1529/biophysj.108.129759
422.
422. A. Roy, A. Kucukural, and Y. Zhang, Nat. Protoc. 5, 725 (2010).
http://dx.doi.org/10.1038/nprot.2010.5
423.
423. M. S. Friedrichs and P. G. Wolynes, Science 246, 371 (1989).
http://dx.doi.org/10.1126/science.246.4928.371
424.
424. A. Davtyan, N. P. Schafer, W. Zheng, C. Clementi, P. G. Wolynes, and G. A. Papoian, J. Phys. Chem. B 116, 8494 (2012).
http://dx.doi.org/10.1021/jp212541y
425.
425. J. A. Hegler, J. Lätzer, A. Shehu, C. Clementi, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 106, 15302 (2009).
http://dx.doi.org/10.1073/pnas.0907002106
426.
426. A. Shehu, L. E. Kavraki, and C. Clementi, Proteins 76, 837 (2009).
http://dx.doi.org/10.1002/prot.22390
427.
427. G. Tóth, J. Phys.: Condens. Matter 19, 335222 (2007).
http://dx.doi.org/10.1088/0953-8984/19/33/335222
428.
428. W. Li and S. Takada, Biophys. J. 99, 3029 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.08.041
429.
429. R. L. C. Akkermans and W. J. Briels, J. Chem. Phys. 114, 1020 (2001).
http://dx.doi.org/10.1063/1.1330744
430.
430. J.-P. Hansen, C. I. Addison, and A. A. Louis, J. Phys.: Condens. Matter 17, S3185 (2005).
http://dx.doi.org/10.1088/0953-8984/17/45/001
431.
431. A. J. Clark, J. McCarty, I. Y. Lyubimov, and M. G. Guenza, Phys. Rev. Lett. 109, 168301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.168301
432.
432. W. G. Noid, Methods Mol. Biol. 924, 487 (2013).
http://dx.doi.org/10.1007/978-1-62703-017-5_19
433.
433. V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009).
http://dx.doi.org/10.1021/ct900369w
434.
434. A. Mirzoev and A. P. Lyubartsev, J. Chem. Theory Comput. 9, 1512 (2013).
http://dx.doi.org/10.1021/ct301019v
435.
435. J. F. Rudzinski and W. G. Noid, J. Chem. Phys. 135, 214101 (2011).
http://dx.doi.org/10.1063/1.3663709
436.
436. R. Evans, Mol. Sim. 4, 409 (1990).
http://dx.doi.org/10.1080/08927029008022403
437.
437. J. T. Chayes, L. Chayes, and E. H. Lieb, Commun. Math. Phys. 93, 57 (1984).
http://dx.doi.org/10.1007/BF01218639
438.
438. J. T. Chayes and L. Chayes, J. Stat. Phys. 36, 471 (1984).
http://dx.doi.org/10.1007/BF01010992
439.
439. N. D. Mermin, Phys. Rev. 137, A1441 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A1441
440.
440. R. L. Henderson, Phys. Lett. A 49, 197 (1974).
http://dx.doi.org/10.1016/0375-9601(74)90847-0
441.
441. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids: Fundamentals (Oxford University Press, 1985), Vol. 1.
442.
442. H. C. Andersen, D. Chandler, and J. D. Weeks, Adv. Chem. Phys. 34, 105 (1976).
http://dx.doi.org/10.1002/9780470142530.ch2
443.
443. W. Schommers, Phys. Rev. A 28, 3599 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.3599
444.
444. L. Reatto, D. Levesque, and J. J. Weis, Phys. Rev. A 33, 3451 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3451
445.
445. R. L. McGreevy and L. Pusztai, Mol. Simul. 1, 359 (1988).
http://dx.doi.org/10.1080/08927028808080958
446.
446. D. Reith, H. Meyer, and F. Müller-Plathe, Macromolecules 34, 2335 (2001).
http://dx.doi.org/10.1021/ma001499k
447.
447. M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett. 95, 228301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.228301
448.
448. W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, and O. Hahn, Acta Polym. 49, 61 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V
449.
449. J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries, Adv. Polym. Sci. 152, 41 (2000).
http://dx.doi.org/10.1007/3-540-46778-5_2
450.
450. A. Villa, C. Peter, and N. F. A. van der Vegt, Phys. Chem. Chem. Phys. 11, 2077 (2009).
http://dx.doi.org/10.1039/b818144f
451.
451. M. R. Betancourt and S. J. Omovie, J. Chem. Phys. 130, 195103 (2009).
http://dx.doi.org/10.1063/1.3137045
452.
452. A. A. Louis, P. G. Bolhuis, J. P. Hansen, and E. J. Meijer, Phys. Rev. Lett. 85, 2522 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2522
453.
453. J. W. Mullinax and W. G. Noid, Phys. Rev. Lett. 103, 198104 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.198104
454.
454. J. W. Mullinax and W. G. Noid, J. Phys. Chem. C 114, 5661 (2010).
http://dx.doi.org/10.1021/jp9073976
455.
455. T. L. Hill, Statistical Mechanics: Principles and Selected Applications (Dover reprint, 1987).
456.
456. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, San Diego, CA, 1990).
457.
457. M. P. Taylor and J. E. G. Lipson, J. Chem. Phys. 100, 518 (1994).
http://dx.doi.org/10.1063/1.466966
458.
458. P. Attard, J. Chem. Phys. 102, 5411 (1995).
http://dx.doi.org/10.1063/1.469269
459.
459. Y. G. Chen, C. Kaur, and J. D. Weeks, J. Phys. Chem. B 108, 19874 (2004).
http://dx.doi.org/10.1021/jp0469261
460.
460. C. R. Ellis, J. F. Rudzinski, and W. G. Noid, Macromol. Theory Simul. 20, 478 (2011).
http://dx.doi.org/10.1002/mats.201100022
461.
461. J. F. Rudzinski and W. G. Noid, J. Phys. Chem. B 116, 8621 (2012).
http://dx.doi.org/10.1021/jp3002004
462.
462. L. R. Pratt and D. Chandler, J. Chem. Phys. 67, 3683 (1977).
http://dx.doi.org/10.1063/1.435308
463.
463. J. W. Mullinax and W. G. Noid, J. Chem. Phys. 133, 124107 (2010).
http://dx.doi.org/10.1063/1.3481574
464.
464. A. Villa, N. F. A. van der Vegt, and C. Peter, Phys. Chem. Chem. Phys. 11, 2068 (2009).
http://dx.doi.org/10.1039/b818146m
465.
465. E. Brini, V. Marcon, and N. F. A. van der Vegt, Phys. Chem. Chem. Phys. 13, 10468 (2011).
http://dx.doi.org/10.1039/c0cp02888f
466.
466. O. Engin, A. Villa, C. Peter, and M. Sayar, Macromol. Theory Simul. 20, 451 (2011).
http://dx.doi.org/10.1002/mats.201100005
467.
467. A. K. Soper, Chem. Phys. 202, 295 (1996).
http://dx.doi.org/10.1016/0301-0104(95)00357-6
468.
468. D. Reith, M. Pütz, and F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003).
http://dx.doi.org/10.1002/jcc.10307
469.
469. H. A. Karimi-Varzaneh and F. Müller-Plathe, Top. Curr. Chem. 307, 295 (2012).
http://dx.doi.org/10.1007/128_2010_122
470.
470. P. Májek and R. Elber, Proteins 76, 822 (2009).
http://dx.doi.org/10.1002/prot.22388
471.
471. K. R. Hadley and C. McCabe, Biophys. J. 99, 2896 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.08.044
472.
472. K. R. Hadley and C. McCabe, J. Chem. Phys. 132, 134505 (2010).
http://dx.doi.org/10.1063/1.3360146
473.
473. T. Terakawa and S. Takada, Biophys. J. 101, 1450 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.08.003
474.
474. B. Ni and A. Baumketner, J. Chem. Phys. 138, 064102 (2013).
http://dx.doi.org/10.1063/1.4790160
475.
475. S. Jain, S. Garde, and S. K. Kumar, Ind. Eng. Chem. Res. 45, 5614 (2006).
http://dx.doi.org/10.1021/ie060042h
476.
476. G. Megariotis, A. Vyrkou, A. Leygue, and D. N. Theodorou, Ind. Eng. Chem. Res. 50, 546 (2011).
http://dx.doi.org/10.1021/ie901957r
477.
477. C.-C. Fu, P. M. Kulkarni, M. S. Shell, and L. G. Leal, J. Chem. Phys. 137, 164106 (2012).
http://dx.doi.org/10.1063/1.4759463
478.
478. R. H. Swendsen, Phys. Rev. Lett. 42, 859 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.859
479.
479. A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52, 3730 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.3730
480.
480. A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 55, 5689 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.5689
481.
481. A. Lyubartsev, A. Mirzoev, L. J. Chen, and A. Laaksonen, Faraday Discuss. 144, 43 (2010).
http://dx.doi.org/10.1039/b901511f
482.
482. T. Murtola, E. Falck, M. Patra, M. Karttunen, and I. Vattulainen, J. Chem. Phys. 121, 9156 (2004).
http://dx.doi.org/10.1063/1.1803537
483.
483. A. P. Lyubartsev, Eur. Biophys. J. 35, 53 (2005).
http://dx.doi.org/10.1007/s00249-005-0005-y
484.
484. A. Savelyev and G. A. Papoian, J. Phys. Chem. B 113, 7785 (2009).
http://dx.doi.org/10.1021/jp9005058
485.
485. M. S. Shell, J. Chem. Phys. 129, 144108 (2008).
http://dx.doi.org/10.1063/1.2992060
486.
486. A. Chaimovich and M. S. Shell, J. Chem. Phys. 134, 094112 (2011).
http://dx.doi.org/10.1063/1.3557038
487.
487. S. Kullback and R. A. Leibler, Ann. Math. Stat. 22, 79 (1951).
http://dx.doi.org/10.1214/aoms/1177729694
488.
488. I. Bilionis and N. Zabaras, J. Chem. Phys. 138, 044313 (2013).
http://dx.doi.org/10.1063/1.4789308
489.
489. S. P. Carmichael and M. S. Shell, J. Phys. Chem. B 116, 8383 (2012).
http://dx.doi.org/10.1021/jp2114994
490.
490. A. Chaimovich and M. S. Shell, Phys. Rev. E 81, 060104(R) (2010).
http://dx.doi.org/10.1103/PhysRevE.81.060104
491.
491. P. Español and I. Zúñiga, Phys. Chem. Chem. Phys. 13, 10538 (2011).
http://dx.doi.org/10.1039/c0cp02826f
492.
492. S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005).
http://dx.doi.org/10.1021/jp044629q
493.
493. S. Izvekov and G. A. Voth, J. Chem. Phys. 123, 134105 (2005).
http://dx.doi.org/10.1063/1.2038787
494.
494. F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
http://dx.doi.org/10.1209/0295-5075/26/8/005
495.
495. A. J. Chorin, O. H. Hald, and R. Kupferman, Proc. Natl. Acad. Sci. U.S.A. 97, 2968 (2000).
http://dx.doi.org/10.1073/pnas.97.7.2968
496.
496. A. J. Chorin, Multiscale Model. Simul. 1, 105 (2003).
http://dx.doi.org/10.1137/S1540345902405556
497.
497. W. G. Noid, P. Liu, Y. T. Wang, J.-W. Chu, G. S. Ayton, S. Izvekov, H. C. Andersen, and G. A. Voth, J. Chem. Phys. 128, 244115 (2008).
http://dx.doi.org/10.1063/1.2938857
498.
498. W. G. Noid, J.-W. Chu, G. S. Ayton, and G. A. Voth, J. Phys. Chem. B 111, 4116 (2007).
http://dx.doi.org/10.1021/jp068549t
499.
499. A. J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science (Springer, New York, NY, 2006).
500.
500. H. M. Cho and J. W. Chu, J. Chem. Phys. 131, 134107 (2009).
http://dx.doi.org/10.1063/1.3238547
501.
501. L. Lu, J. F. Dama, and G. A. Voth, J. Chem. Phys. 139, 121906 (2013).
http://dx.doi.org/10.1063/1.4811667
502.
502. W. G. Noid, G. S. Ayton, S. Izvekov, and G. A. Voth, in Coarse-Graining of Condensed Phase and Biomolecular Systems, edited by G. A. Voth (CRC Press, 2008), Chap. 3, pp. 2140.
503.
503. L. Lu and G. A. Voth, Adv. Chem. Phys. 149, 47 (2012).
http://dx.doi.org/10.1002/9781118180396.ch2
504.
504. S. Izvekov and G. A. Voth, J. Chem. Theory Comput. 2, 637 (2006).
http://dx.doi.org/10.1021/ct050300c
505.
505. L. Lu and G. A. Voth, J. Phys. Chem. B 113, 1501 (2009).
http://dx.doi.org/10.1021/jp809604k
506.
506. Y. Wang and G. A. Voth, J. Phys. Chem. B 114, 8735 (2010).
http://dx.doi.org/10.1021/jp1007768
507.
507. L. Deng, Y. Wang, and Z.-C. Ou-Yang, J. Phys. Chem. B 116, 10135 (2012).
http://dx.doi.org/10.1021/jp210683n
508.
508. J. Zhou, I. F. Thorpe, S. Izvekov, and G. A. Voth, Biophys. J. 92, 4289 (2007).
http://dx.doi.org/10.1529/biophysj.106.094425
509.
509. I. F. Thorpe, J. Zhou, and G. A. Voth, J. Phys. Chem. B 112, 13079 (2008).
http://dx.doi.org/10.1021/jp8015968
510.
510. I. F. Thorpe, D. P. Goldenberg, and G. A. Voth, J. Phys. Chem. B 115, 11911 (2011).
http://dx.doi.org/10.1021/jp204455g
511.
511. R. D. Hills, L. Y. Lu, and G. A. Voth, PLOS Comput. Biol. 6, e1000827 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000827
512.
512. S. Izvekov and G. A. Voth, J. Chem. Phys. 125, 151101 (2006).
http://dx.doi.org/10.1063/1.2360580
513.
513. M. C. Villet and G. H. Fredrickson, J. Chem. Phys. 132, 034109 (2010).
http://dx.doi.org/10.1063/1.3289723
514.
514. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).
http://dx.doi.org/10.1063/1.1730376
515.
515. M. P. Allen and D. P. Tildesley, Computer Simulation of Liquids (Oxford Press, New York, NY, 1987).
516.
516. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, San Diego, CA, 2002).
517.
517. A. R. Leach, Molecular Modelling: Principles and Applications (Addison-Wesley/Longman, 1998).
518.
518. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
519.
519. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-Mccarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
520.
520. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004).
http://dx.doi.org/10.1002/jcc.20035
521.
521. C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, J. Comput. Chem. 25, 1656 (2004).
http://dx.doi.org/10.1002/jcc.20090
522.
522. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins 65, 712 (2006).
http://dx.doi.org/10.1002/prot.21123
523.
523. K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and D. E. Shaw, Proteins 78, 1950 (2010).
http://dx.doi.org/10.1002/prot.22711
524.
524. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, and A. D. MacKerell Jr., J. Chem. Theory Comput. 8, 3257 (2012).
http://dx.doi.org/10.1021/ct300400x
525.
525. A. Liwo, C. Czaplewski, S. Oldziej, and H. A. Scheraga, Curr. Opin. Struct. Biol. 18, 134 (2008).
http://dx.doi.org/10.1016/j.sbi.2007.12.001
526.
526. M. Christen and W. F. Van Gunsteren, J. Comput. Chem. 29, 157 (2008).
http://dx.doi.org/10.1002/jcc.20725
527.
527. D. Zuckerman, Annu. Rev. Biophys. 40, 41 (2011).
http://dx.doi.org/10.1146/annurev-biophys-042910-155255
528.
528. J. Mervis, Science 293, 1235 (2001).
http://dx.doi.org/10.1126/science.293.5533.1235
529.
529. T. Makoto, in 16th IEEE Hot Chips Symposium (IEEE, 2004).
530.
530. D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. B. Shan, and W. Wriggers, Science 330, 341 (2010).
http://dx.doi.org/10.1126/science.1187409
531.
531. J. Zverina, “XSEDE gaining speed as year two begins,” HPC Wire (2012); online at http://www.hpcwire.com/hpcwire/2012-07-25/xsede_gaining_speed_as_year_two_begins.html.
532.
532. A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, and R. C. Walker, J. Chem. Theory Comput. 8, 1542 (2012).
http://dx.doi.org/10.1021/ct200909j
533.
533. L. C. Pierce, R. Salomon-Ferrer, C. Augusto F. de Oliveira, J. A. McCammon, and R. C. Walker, J. Chem. Theory Comput. 8, 2997 (2012).
http://dx.doi.org/10.1021/ct300284c
534.
534. B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).
http://dx.doi.org/10.1002/jcc.21287
535.
535. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
536.
536. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
537.
537. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
538.
538. D. Case, T. Darden, I. T. E. Cheatham, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. Goetz, I. Kolossváry, K. Wong, F. Paesani, J. Vanicek, R. Wolf, J. Liu, X. Wu, S. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. Roe, D. Mathews, M. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. Kollman, “Amber12” Techical Report. (University of California, San Francisco, 2012).
539.
539. P. L. Freddolino, S. Park, B. Roux, and K. Schulten, Biophys. J. 96, 3772 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.02.033
540.
540. O. F. Lange, D. van der Spoel, and B. L. de Groot, Biophys. J. 99, 647 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.04.062
541.
541. E. A. Cino, W.-Y. Choy, and M. Karttunen, J. Chem. Theory Comput. 8, 2725 (2012).
http://dx.doi.org/10.1021/ct300323g
542.
542. K. A. Beauchamp, Y.-S. Lin, R. Das, and V. S. Pande, J. Chem. Theory Comput. 8, 1409 (2012).
http://dx.doi.org/10.1021/ct2007814
543.
543. K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, PLoS ONE 7, e32131 (2012).
http://dx.doi.org/10.1371/journal.pone.0032131
544.
544. P. Cieplak, F.-Y. Dupradeau, Y. Duan, and J. Wang, J. Phys.: Condens. Matter 21, 333102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/33/333102
545.
545. D. Paschek, J. Chem. Phys. 120, 6674 (2004).
http://dx.doi.org/10.1063/1.1652015
546.
546. C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
547.
547. T. A. Halgren and W. Damm, Curr. Opin. Struct. Biol. 11, 236 (2001).
http://dx.doi.org/10.1016/S0959-440X(00)00196-2
548.
548. A. Warshel, M. Kato, and A. V. Pisliakov, J. Chem. Theory Comput. 3, 2034 (2007).
http://dx.doi.org/10.1021/ct700127w
549.
549. J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
http://dx.doi.org/10.1021/jp910674d
550.
550. E. Fadda and R. J. Woods, Drug Discovery Today 15, 596 (2010).
http://dx.doi.org/10.1016/j.drudis.2010.06.001
551.
551. E. P. Raman, O. Guvench, and A. D. MacKerell, J. Phys. Chem. B 114, 12981 (2010).
http://dx.doi.org/10.1021/jp105758h
552.
552. H. S. Hansen and P. H. Hünenberger, J. Comput. Chem. 32, 998 (2011).
http://dx.doi.org/10.1002/jcc.21675
553.
553. D. L. Mobley, J. Comput.-Aided Mol. Des. 26, 93 (2012).
http://dx.doi.org/10.1007/s10822-011-9497-y
554.
554. S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein, J. Chem. Phys. 119, 7043 (2003).
http://dx.doi.org/10.1063/1.1607955
555.
555. P. K. Depa and J. K. Maranas, J. Chem. Phys. 123, 094901 (2005).
http://dx.doi.org/10.1063/1.1997150
556.
556. P. K. Depa and J. K. Maranas, J. Chem. Phys. 126, 054903 (2007).
http://dx.doi.org/10.1063/1.2433724
557.
557. D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt, and K. Kremer, Phys. Chem. Chem. Phys. 13, 10412 (2011).
http://dx.doi.org/10.1039/c1cp20247b
558.
558. H. Mori, Prog. Theor. Phys. 33, 423 (1965).
http://dx.doi.org/10.1143/PTP.33.423
559.
559. A. N. Naganathan, “Coarse-grained models of protein folding as detailed tools to connect with experiments,” Wiley Interdiscip. Rev. Comput. Mol. Sci. (published online).
http://dx.doi.org/10.1002/wcms.1133
560.
560. M. L. Klein and W. Shinoda, Science 321, 798 (2008).
http://dx.doi.org/10.1126/science.1157834
561.
561. H. L. Scott, Curr. Opin. Struct. Biol. 12, 495 (2002).
http://dx.doi.org/10.1016/S0959-440X(02)00353-6
562.
562. A. T. Hagler and B. Honig, Proc. Natl. Acad. Sci. U.S.A. 75, 554 (1978).
http://dx.doi.org/10.1073/pnas.75.2.554
563.
563. C. Wilson and S. Doniach, Proteins 6, 193 (1989).
http://dx.doi.org/10.1002/prot.340060208
564.
564. F. E. Boas and P. B. Harbury, Curr. Opin. Struct. Biol. 17, 199 (2007).
http://dx.doi.org/10.1016/j.sbi.2007.03.006
565.
565. L. Larini and J.-E. Shea, J. Phys. Chem. B 116, 8337 (2012).
http://dx.doi.org/10.1021/jp2097263
566.
566. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and K. Kremer, Phys. Rev. Lett. 108, 170602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.170602
567.
567. R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108301
568.
568. D. Alemani, F. Collu, M. Cascella, and M. Dal Peraro, J. Chem. Theory Comput. 6, 315 (2010).
http://dx.doi.org/10.1021/ct900457z
569.
569. E. H. Yap, N. L. Fawzi, and T. Head-Gordon, Proteins 70, 626 (2008).
http://dx.doi.org/10.1002/prot.21515
570.
570. M. Makowski, E. Sobolewski, C. Czaplewski, S. Ołdziej, A. Liwo, and H. A. Scheraga, J. Phys. Chem. B 112, 11385 (2008).
http://dx.doi.org/10.1021/jp803896b
571.
571. V. Krishna, G. S. Ayton, and G. A. Voth, Biophys. J. 98, 18 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.09.049
572.
572. M. Enciso and A. Rey, J. Chem. Phys. 132, 235102 (2010).
http://dx.doi.org/10.1063/1.3436723
573.
573. J. A. Armstrong, C. Chakravarty, and P. Ballone, J. Chem. Phys. 136, 124503 (2012).
http://dx.doi.org/10.1063/1.3697383
574.
574. N. Guttenberg, J. F. Dama, M. G. Saunders, G. A. Voth, J. Weare, and A. R. Dinner, J. Chem. Phys. 138, 094111 (2013).
http://dx.doi.org/10.1063/1.4793313
575.
575. M. Kroger, Phys. Rep. 390, 453 (2004).
http://dx.doi.org/10.1016/j.physrep.2003.10.014
576.
576. S. Rackovsky and H. A. Scheraga, J. Biomol. Struct. Dyn. 28, 593 (2011).
http://dx.doi.org/10.1080/073911011010524957
577.
577. D. J. Wales, Energy Landscapes (Cambridge University Press, 2003).
578.
578. F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.978
579.
579. O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495 (1997).
http://dx.doi.org/10.1063/1.473299
580.
580. S. V. Krivov and M. Karplus, J. Chem. Phys. 117, 10894 (2002).
http://dx.doi.org/10.1063/1.1517606
581.
581. G. D'Adamo, A. Pelissetto, and C. Pierleoni, J. Chem. Phys. 138, 234107 (2013).
http://dx.doi.org/10.1063/1.4810881
582.
582. T. Murtola, E. Falck, M. Karttunen, and I. Vattulainen, J. Chem. Phys. 126, 075101 (2007).
http://dx.doi.org/10.1063/1.2646614
583.
583. A. Das and H. C. Andersen, J. Chem. Phys. 132, 164106 (2010).
http://dx.doi.org/10.1063/1.3394862
584.
584. B. Mukherjee, L. Delle Site, K. Kremer, and C. Peter, J. Phys. Chem. B 116, 8474 (2012).
http://dx.doi.org/10.1021/jp212300d
585.
585. M. Enciso, C. Schutte, and L. Delle Site, Soft Matter 9, 6118 (2013).
http://dx.doi.org/10.1039/c3sm27893j
586.
586. T. Vettorel and H. Meyer, J. Chem. Theory Comput. 2, 616 (2006).
http://dx.doi.org/10.1021/ct0503264
587.
587. J. Ghosh and R. Faller, Mol. Simul. 33, 759 (2007).
http://dx.doi.org/10.1080/08927020701275050
588.
588. A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. Ołdziej, K. Wachucik, and H. A. Scheraga, J. Phys. Chem. B 111, 260 (2007).
http://dx.doi.org/10.1021/jp065380a
589.
589. H.-J. Qian, P. Carbone, X. Chen, H. A. Karimi-Varzaneh, C. C. Liew, and F. Müller-Plathe, Macromolecules 41, 9919 (2008).
http://dx.doi.org/10.1021/ma801910r
590.
590. V. Krishna, W. G. Noid, and G. A. Voth, J. Chem. Phys. 131, 024103 (2009).
http://dx.doi.org/10.1063/1.3167797
591.
591. E. Sobolewski, M. Makowski, S. Oldziej, C. Czaplewski, A. Liwo, and H. A. Scheraga, Protein Eng. Des. Sel. 22, 547 (2009).
http://dx.doi.org/10.1093/protein/gzp028
592.
592. K. Farah, A. C. Fogarty, M. C. Böhm, and F. Müller-Plathe, Phys. Chem. Chem. Phys. 13, 2894 (2011).
http://dx.doi.org/10.1039/c0cp01333a
593.
593. L. Lu and G. A. Voth, J. Chem. Phys. 134, 224107 (2011).
http://dx.doi.org/10.1063/1.3599049
594.
594. S. Izvekov, J. Chem. Phys. 134, 034104 (2011).
http://dx.doi.org/10.1063/1.3521480
595.
595. E. Brini and N. F. A. van der Vegt, J. Chem. Phys. 137, 154113 (2012).
http://dx.doi.org/10.1063/1.4758936
596.
596. E. Brini, C. R. Herbers, G. Deichmann, and N. F. A. van der Vegt, Phys. Chem. Chem. Phys. 14, 11896 (2012).
http://dx.doi.org/10.1039/c2cp40735c
597.
597. I. Vorobyov, L. Li, and T. W. Allen, J. Phys. Chem. B 112, 9588 (2008).
http://dx.doi.org/10.1021/jp711492h
598.
598. W. D. Bennett and D. P. Tieleman, J. Chem. Theory Comput. 7, 2981 (2011).
http://dx.doi.org/10.1021/ct200291v
599.
599. M. Jochum, D. Andrienko, K. Kremer, and C. Peter, J. Chem. Phys. 137, 064102 (2012).
http://dx.doi.org/10.1063/1.4742067
600.
600. E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008).
http://dx.doi.org/10.1063/1.2899729
601.
601. S. Izvekov, P. W. Chung, and B. M. Rice, J. Chem. Phys. 133, 064109 (2010).
http://dx.doi.org/10.1063/1.3464776
602.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/9/10.1063/1.4818908
Loading
/content/aip/journal/jcp/139/9/10.1063/1.4818908
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/9/10.1063/1.4818908
2013-09-03
2014-09-16

Abstract

By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/9/1.4818908.html;jsessionid=1b6m30lvr0v4s.x-aip-live-03?itemId=/content/aip/journal/jcp/139/9/10.1063/1.4818908&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Coarse-grained models for biomolecular systems
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/9/10.1063/1.4818908
10.1063/1.4818908
SEARCH_EXPAND_ITEM