Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/9/10.1063/1.4819131
1.
1. P. Jonkheijm, D. Weinrich, H. Schroeder, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. 47, 9618 (2008).
http://dx.doi.org/10.1002/anie.200801711
2.
2. U. Bilitewski, Anal. Chim. Acta 568, 232 (2006).
http://dx.doi.org/10.1016/j.aca.2005.12.073
3.
3. H. Zhu and M. Snyder, Curr. Opin. Chem. Biol. 7, 55 (2003).
http://dx.doi.org/10.1016/S1367-5931(02)00005-4
4.
4. M. Uttamchandani and S. Q. Yao, Curr. Pharm. Des. 14, 2428 (2008).
http://dx.doi.org/10.2174/138161208785777450
5.
5. M. Cretich, F. Damina, G. Pirria, and M. Chiari, Biomol. Eng. 23, 77 (2006).
http://dx.doi.org/10.1016/j.bioeng.2006.02.001
6.
6. I. Balboni, S. M. Chan, M. Kattah, J. D. Tenenbaum, A. J. Butte, and P. J. Utz, Annu. Rev. Immunol. 24, 391 (2006).
http://dx.doi.org/10.1146/annurev.immunol.24.021605.090709
7.
7. P. Angenendt, J. Glökler, D. Murphy, H. Lehrach, and D. J. Cahill, Anal. Biochem. 309, 253 (2002).
http://dx.doi.org/10.1016/S0003-2697(02)00257-9
8.
8. P. Angenendt, J. Glökler, J. Sobek, H. Lehrach, and D. J. Cahill, J. Chromatogr. A 1009, 97 (2003).
http://dx.doi.org/10.1016/S0021-9673(03)00769-6
9.
9. P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003).
http://dx.doi.org/10.1016/S0003-2697(02)00442-6
10.
10. M. Feldmann, Nat. Rev. Immun. 2, 364 (2002).
http://dx.doi.org/10.1038/nri802
11.
11. M. Feldmann and L. Steinman, Nature (London) 435, 612 (2005).
http://dx.doi.org/10.1038/nature03727
12.
12. J. Vilček and M. Feldmann, Trends Pharmacol. Sci. 25, 201 (2004).
http://dx.doi.org/10.1016/j.tips.2004.02.011
13.
13. J. J. Gray, Curr. Opin. Struct. Biol. 14, 110 (2004).
http://dx.doi.org/10.1016/j.sbi.2003.12.001
14.
14. R. Wacker, H. Schroder, and C. M. Niemeyer, Anal. Biochem. 330, 281 (2004).
http://dx.doi.org/10.1016/j.ab.2004.03.017
15.
15. T. Joos and J. Bachmann, Front. Biosci. 14, 4376 (2009).
http://dx.doi.org/10.2741/3534
16.
16. K. Nakanishi, T. Sakiyama, and K. Imamura, J. Biosci. Bioeng. 91, 233 (2001).
http://dx.doi.org/10.1016/S1389-1723(01)80127-4
17.
17. M. F. M. Engel, A. J. W. G. Visser, and C. P. M. van Mierlo, Proc. Natl. Acad. Sci. U.S.A. 101, 11316 (2004).
http://dx.doi.org/10.1073/pnas.0401603101
18.
18. P. Billsten, M. Wahlgren, T. Arnebrant, J. McGuire, and H. Elwing, J. Colloid Interface Sci. 175, 77 (1995).
http://dx.doi.org/10.1006/jcis.1995.1431
19.
19. C. Czeslik and R. Winter, Phys. Chem. Chem. Phys. 3, 235 (2001).
http://dx.doi.org/10.1039/b005900p
20.
20. H. Larsericsdotter, S. Oscarsson, and J. Buijs, J. Colloid Interface Sci. 276, 261 (2004).
http://dx.doi.org/10.1016/j.jcis.2004.03.056
21.
21. A. P. L. Brun, S. A. Holt, D. S. Shah, C. F. Majkrzak, and J. H. Lakey, Eur. Biophys. J. 37, 639 (2008).
http://dx.doi.org/10.1007/s00249-008-0291-2
22.
22. T. S. Tsapikouni and Y. F. Missirlis, Mater. Sci. Eng., B 152, 2 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.06.007
23.
23. V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).
http://dx.doi.org/10.1021/la047807f
24.
24. M. Agashe, V. Raut, S. J. Stuart, and R. A. Latour, Langmuir 21, 1103 (2005).
http://dx.doi.org/10.1021/la0478346
25.
25. J. Zheng, Y. He, S. Chen, L. Li, M. T. Bernards, and S. Jiang, J. Chem. Phys. 125, 174714 (2006).
http://dx.doi.org/10.1063/1.2363978
26.
26. G. Raffaini and F. Ganazzoli, Langmuir 26, 5679 (2010).
http://dx.doi.org/10.1021/la903769c
27.
27. S.-W. Hung, P.-Y. Hsiao, M.-C. Lu, and C.-C. Chieng, J. Phys. Chem. B 116, 12661 (2012).
http://dx.doi.org/10.1021/jp304695w
28.
28. Y. Sun, W. J. Welsh, and R. A. Latour, Langmuir 21, 5616 (2005).
http://dx.doi.org/10.1021/la046932o
29.
29. H.-X. Zhou and K. A. Dill, Biochemistry 40, 11289 (2001).
http://dx.doi.org/10.1021/bi0155504
30.
30. J. Zhou, S. Chen, and S. Jiang, Langmuir 19, 3472 (2003).
http://dx.doi.org/10.1021/la026871z
31.
31. S. Ravichandran, J. D. Madura, and J. Talbot, J. Phys. Chem. B 105, 3610 (2001).
http://dx.doi.org/10.1021/jp010223r
32.
32. F. Carlsson, E. Hyltner, T. Arnebrant, M. Malmsten, and P. Linse, J. Phys. Chem. B 108, 9871 (2004).
http://dx.doi.org/10.1021/jp0495186
33.
33. V. Castells and P. R. van Tassel, J. Chem. Phys. 122, 084707 (2005).
http://dx.doi.org/10.1063/1.1849772
34.
34. S. Y. Victoria Castells and P. R. V. Tassel, Phys. Rev. E 65, 031912 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.031912
35.
35. T. A. Knotts IV, N. Rathore, and J. J. de Pablo, Biophys. J. 94, 4473 (2008).
http://dx.doi.org/10.1529/biophysj.107.123158
36.
36. Z. Zhuang, A. I. Jewett, P. Soto, and J.-E. Shea, Phys. Biol. 6, 015004 (2009).
http://dx.doi.org/10.1088/1478-3975/6/1/015004
37.
37. Y. Xie, J. Zhou, and S. Jiang, J. Chem. Phys. 132, 065101 (2010).
http://dx.doi.org/10.1063/1.3305244
38.
38. M. Friedel, A. Baumketner, and J. Shea, Proc. Natl. Acad. Sci. U.S.A. 103, 8396 (2006).
http://dx.doi.org/10.1073/pnas.0601210103
39.
39. T. A. Knotts IV, N. Rathore, and J. J. de Pablo, Proteins 61, 385 (2005).
http://dx.doi.org/10.1002/prot.20581
40.
40. S. Wei and T. A. Knotts IV, J. Chem. Phys. 133, 115102 (2010).
http://dx.doi.org/10.1063/1.3479039
41.
41. Y. Wei and R. A. Latour, Langmuir 25, 5637 (2009).
http://dx.doi.org/10.1021/la8042186
42.
42. A. Morriss-Andrews, G. Bellesia, and J.-E. Shea, J. Chem. Phys. 135, 085102 (2011).
http://dx.doi.org/10.1063/1.3624929
43.
43. R. B. Pandey, Z. Kuang, B. L. Farmer, S. S. Kim, and R. R. Naik, Soft Matter 8, 9101 (2012).
http://dx.doi.org/10.1039/c2sm25870f
44.
44. J. Karanicolas and C. L. Brooks III, J. Mol. Biol. 334, 309 (2003).
http://dx.doi.org/10.1016/j.jmb.2003.09.047
45.
45. J. Karanicolas and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 100, 3954 (2003).
http://dx.doi.org/10.1073/pnas.0731771100
46.
46. J. Karanicolas and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 101, 3432 (2004).
http://dx.doi.org/10.1073/pnas.0304825101
47.
47. R. D. Hills, Jr. and C. L. Brooks III, Int. J. Mol. Sci. 10, 889 (2009).
http://dx.doi.org/10.3390/ijms10030889
48.
48. Y. Wei and R. A. Latour, Langmuir 26, 18852 (2010).
http://dx.doi.org/10.1021/la103685d
49.
49. A. Lehninger, D. L. Nelson, and M. M. Cox, Lehninger Principles of Biochemistry, 5th ed. (W. H. Freeman, 2008).
50.
50. J. Kyte and R. F. Doolittle, J. Mol. Biol. 157, 105 (1982).
http://dx.doi.org/10.1016/0022-2836(82)90515-0
51.
51. M. Hanson, K. Unger, R. Denoyel, and J. Rouquerol, J. Biochem. Biophys. Methods 29, 283 (1994).
http://dx.doi.org/10.1016/0165-022X(94)90039-6
52.
52. G. Wildegger and T. Kiefhaber, J. Mol. Biol. 270, 294 (1997).
http://dx.doi.org/10.1006/jmbi.1997.1030
53.
53. W. Chen, H. Huang, C. Lin, F. Lin, and Y. Chan, Langmuir 19, 93959403 (2003).
http://dx.doi.org/10.1021/la034783o
54.
54. M. Iafisco, B. Palazzo, G. Falini, M. Di Foggia, S. Bonora, S. Nicolis, L. Casella, and N. Roveri, Langmuir 24, 4924 (2008).
http://dx.doi.org/10.1021/la703381h
55.
55. J. Lee and S. Saavedra, Langmuir 12, 4025 (1996).
http://dx.doi.org/10.1021/la960253z
56.
56. J. Santos, N. Matsuda, Z. Qi, T. Yoshida, A. Takatsu, and K. Kato, Surf. Interface Anal. 35, 432 (2003).
http://dx.doi.org/10.1002/sia.1551
57.
57. J. Salafsky and K. Eisenthal, J. Phys. Chem. B 104, 7752 (2000).
http://dx.doi.org/10.1021/jp001294d
58.
58. T. J. Schmitt, J. E. Clark, and T. A. Knotts IV, J. Chem. Phys. 131, 235101 (2009).
http://dx.doi.org/10.1063/1.3270167
59.
59. J. I. Lewis, D. J. Moss, and T. A. Knotts IV, J. Chem. Phys. 136, 245101 (2012).
http://dx.doi.org/10.1063/1.4729604
60.
60. B. Brooks, R. Bruccoleri, D. Olafson, D. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187 (1983).
http://dx.doi.org/10.1002/jcc.540040211
61.
61. A. MacKerell, Jr., B. Brooks, C. Brooks III, L. Nilsson, B. Roux, Y. Won, and M. Karplus, CHARMM: The Energy Function and Its Parameterization with an Overview of the Program (John Wiley & Sons, Chichester, 1998), pp. 271277.
62.
62. B. R. Brooks, C. L. Brooks III, A. D. MacKerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).
http://dx.doi.org/10.1002/jcc.21287
63.
63. S. Wei and T. A. Knotts IV, J. Chem. Phys. 134, 185101 (2011).
http://dx.doi.org/10.1063/1.3589863
64.
64. T. Beutler and W. Vangunsteren, J. Chem. Phys. 100, 1492 (1994).
http://dx.doi.org/10.1063/1.466628
65.
65. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
66.
66. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
67.
67. S. Nosé, J. Phys.: Condens. Matter 2, SA115 (1990).
http://dx.doi.org/10.1088/0953-8984/2/S/013
68.
68. N. A. Vellore, J. A. Yancey, G. Collier, R. A. Latour, and S. J. Stuart, Langmuir 26, 7396 (2010).
http://dx.doi.org/10.1021/la904415d
69.
69. X. P. Geng, M. R. Zheng, B. H. Wang, Z. M. Lei, and X. D. Geng, J. Therm. Anal. Calorim. 93, 503 (2008).
http://dx.doi.org/10.1007/s10973-007-8676-5
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/9/10.1063/1.4819131
Loading
/content/aip/journal/jcp/139/9/10.1063/1.4819131
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/9/10.1063/1.4819131
2013-09-06
2016-12-04

Abstract

The interaction of proteins with surfaces is important in numerous applications in many fields—such as biotechnology, proteomics, sensors, and medicine—but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/9/1.4819131.html;jsessionid=rETUZz1Wyzu54cvFYJFyXeW8.x-aip-live-03?itemId=/content/aip/journal/jcp/139/9/10.1063/1.4819131&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/9/10.1063/1.4819131&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4819131'
Right1,Right2,Right3,