Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/9/10.1063/1.4819693
1.
1. T. Hayashi, K. Tanaka, and M. Haruta, J. Catal. 178, 566 (1998).
http://dx.doi.org/10.1006/jcat.1998.2157
2.
2. G. Mills, M. S. Gordon, and H. Metiu, J. Chem. Phys. 118, 4198 (2003).
http://dx.doi.org/10.1063/1.1542879
3.
3. R. M. Olson, S. Varganov, M. S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S. A. Kucharski, and M. Musial, J. Am. Chem. Soc. 127, 1049 (2005).
http://dx.doi.org/10.1021/ja040197l
4.
4. J. Čížek, J. Chem. Phys. 45, 4256 (1966).
http://dx.doi.org/10.1063/1.1727484
5.
5. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
6.
6. P. Pyykkö, Angew. Chem., Int. Ed. 43, 4412 (2004).
http://dx.doi.org/10.1002/anie.200300624
7.
7. P. Pyykkö, Inorg. Chim. Acta 358, 4113 (2005).
http://dx.doi.org/10.1016/j.ica.2005.06.028
8.
8. P. Pyykkö, Chem. Soc. Rev. 37, 1967 (2008).
http://dx.doi.org/10.1039/b708613j
9.
9. H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008).
http://dx.doi.org/10.1039/b717686b
10.
10. R. M. Olson and M. S. Gordon, J. Chem. Phys. 126, 214310 (2007).
http://dx.doi.org/10.1063/1.2743005
11.
11. M. Diefenbach and K. S. Kim, J. Phys. Chem. B 110, 21639 (2006).
http://dx.doi.org/10.1021/jp0649854
12.
12. E. M. Fernández, J. M. Soler, and L. C. Balbás, Phys. Rev. B 73, 235433 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235433
13.
13. L. Xiao, B. Tolberg, X. Hu, and L. Wang, J. Chem. Phys. 124, 114309 (2006).
http://dx.doi.org/10.1063/1.2179419
14.
14. Y. K. Han, J. Chem. Phys. 124, 024316 (2006).
http://dx.doi.org/10.1063/1.2150814
15.
15. X.-B. Li, H.-Y. Wang, X.-D. Yang, Z.-H. Zhu, and Y.-J. Tang, J. Chem. Phys. 126, 084505 (2007), and references therein.
http://dx.doi.org/10.1063/1.2434779
16.
16. B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009), and references therein.
http://dx.doi.org/10.1063/1.3204488
17.
17. L. M. Molina and B. Hammer, J. Chem. Phys. 123, 161104 (2005).
http://dx.doi.org/10.1063/1.2110195
18.
18. M. S. Gordon and M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 11671190.
19.
19. B. G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
20.
20. B. G. Levine, J. D. Coe, and T. J. Martínez, J. Phys. Chem. B 112, 405 (2008).
http://dx.doi.org/10.1021/jp0761618
21.
21. J. L. Bentz, R. M. Olson, M. S. Gordon, M. W. Schmidt, and R. A. Kendall, Comput. Phys. Commun. 176, 589 (2007).
http://dx.doi.org/10.1016/j.cpc.2007.03.001
22.
22. R. M. Olson, J. L. Bentz, R. A. Kendall, M. W. Schmidt, and M. S. Gordon, J. Chem. Theory Comput. 3, 1312 (2007).
http://dx.doi.org/10.1021/ct600366k
23.
23. P. Piecuch, S. A. Kucharski, K. Kowalski, and M. Musiał, Comput. Phys. Commun. 149, 71 (2002).
http://dx.doi.org/10.1016/S0010-4655(02)00598-2
24.
24. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).
http://dx.doi.org/10.1139/v92-085
25.
25. K. A. Peterson and C. Puzzarini, Theor. Chem. Acc. 114, 283 (2005).
http://dx.doi.org/10.1007/s00214-005-0681-9
26.
26. D. Figgen, G. Rauhut, M. Dolg, and H. Stoll, Chem. Phys. 311, 227 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.10.005
27.
27. M. Dolg, K. A. Peterson, P. Schwerdtfeger, and H. Stoll, 2009, see http://www.theochem.uni-stuttgart.de/pseudopotentials/.
28.
28. L. Xiao and L. Wang, Chem. Phys. Lett. 392, 452 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.095
29.
29. J. V. Koppen, M. Hapka, M. M. Szczȩśniak, and G. Chałasiński, J. Chem. Phys. 137, 114302 (2012).
http://dx.doi.org/10.1063/1.4752433
30.
30. G. Bravo-Pérez, I. Garzón, and O. Novaro, J. Mol. Struct.: THEOCHEM 493, 225 (1999).
http://dx.doi.org/10.1016/S0166-1280(99)00243-2
31.
31. G. Bravo-Pérez, I. Garzón, and O. Novaro, Chem. Phys. Lett. 313, 655 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00957-4
32.
32. E. M. Fernandez and L. C. Balbas, Phys. Chem. Chem. Phys. 13, 20863 (2011).
http://dx.doi.org/10.1039/c1cp22455g
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/9/10.1063/1.4819693
Loading
/content/aip/journal/jcp/139/9/10.1063/1.4819693
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/9/10.1063/1.4819693
2013-09-03
2016-12-02

Abstract

A parallel numerical derivative code, combined with parallel implementation of the coupled-cluster method with singles, doubles, and non-iterative triples (CCSD(T)), is used to optimize the geometries of the low-energy structures of the Au particle. The effects of geometry relaxation at the CCSD(T) level and the combined effects of the basis set and core-valence correlations are examined and the results are compared with the corresponding second-o