Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/1/10.1063/1.4846300
1.
1. M. Whitby and N. Quirke, Nat. Nanotechnol. 2, 87 (2007).
http://dx.doi.org/10.1038/nnano.2006.175
2.
2. D. Mattia and Y. Gogotsi, Microfluid. Nanofluid. 5, 289 (2008).
http://dx.doi.org/10.1007/s10404-008-0293-5
3.
3. J. A. Thomas and A. J. H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.184502
4.
4. S. Joseph and N. R. Aluru, Nano Lett. 8, 452 (2008).
http://dx.doi.org/10.1021/nl072385q
5.
5. J. A. Thomas, A. J. H. McGaughey, and O. Kuter-Arnebeck, Int. J. Therm. Sci. 49, 281 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.008
6.
6. W. D. Nicholls, M. K. Borg, D. A. Lockerby, and J. M. Reese, Microfluid. Nanofluid. 12, 257 (2012).
http://dx.doi.org/10.1007/s10404-011-0869-3
7.
7. T. Sisan and S. Lichter, Microfluid. Nanofluid. 11, 787 (2011).
http://dx.doi.org/10.1007/s10404-011-0855-9
8.
8. J. H. Walther, K. Ritos, E. R. Cruz-Chu, C. M. Megaridis, and P. Koumoutsakos, Nano Lett. 13, 1910 (2013).
http://dx.doi.org/10.1021/nl304000k
9.
9. W. D. Nicholls, M. K. Borg, D. A. Lockerby, and J. M. Reese, Mol. Simul. 38, 781 (2012).
http://dx.doi.org/10.1080/08927022.2011.654205
10.
10. M. Majumder and B. Corry, Chem. Commun. 47, 7683 (2011).
http://dx.doi.org/10.1039/c1cc11134e
11.
11. D. Mattia, H. H. Bau, and Y. Gogotsi, Langmuir 22, 1789 (2006).
http://dx.doi.org/10.1021/la0518288
12.
12. D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, and Y. Gogotsi, J. Phys. Chem. B 110, 9850 (2006).
http://dx.doi.org/10.1021/jp061138s
13.
13. B. Corry, Energy Environ. Sci. 4, 751 (2011).
http://dx.doi.org/10.1039/c0ee00481b
14.
14. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370, 1 (2011).
http://dx.doi.org/10.1016/j.memsci.2010.12.036
15.
15. C. Neto, D. R. Evans, E. Bonaccursi, H. J. Butt, and V. S. J. Craig, Rep. Prog. Phys. 68, 2859 (2005).
http://dx.doi.org/10.1088/0034-4885/68/12/R05
16.
16. T. Myers, Microfluid. Nanofluid. 10, 1141 (2010).
http://dx.doi.org/10.1007/s10404-010-0752-7
17.
17. J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev. E 84, 016313 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.016313
18.
18. K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Langmuir 28, 14261 (2012).
http://dx.doi.org/10.1021/la3029403
19.
19. S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys. 136, 244704 (2012).
http://dx.doi.org/10.1063/1.4730167
20.
20. M. Menon and D. Srivastava, Chem. Phys. Lett. 307, 407 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00552-7
21.
21. D. Golberg, Y. Bando, C. Tang, and C. Zhi, Adv. Mater. 19, 2413 (2007).
http://dx.doi.org/10.1002/adma.200700179
22.
22. C. Zhi, Y. Bando, C. Tang, and D. Golberg, Mater. Sci. Eng. R 70, 92 (2010).
http://dx.doi.org/10.1016/j.mser.2010.06.004
23.
23. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. Andriotis, Phys. Rev. B 69, 115322 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115322
24.
24. K. Malek and M. Sahimi, J. Chem. Phys. 132, 014310 (2010).
http://dx.doi.org/10.1063/1.3284542
25.
25. C. Y. Won and N. R. Aluru, J. Am. Chem. Soc. 129, 2748 (2007).
http://dx.doi.org/10.1021/ja0687318
26.
26. C. Y. Won and N. R. Aluru, J. Phys. Chem. C 112, 1812 (2008).
http://dx.doi.org/10.1021/jp076747u
27.
27. M. E. Suk, A. V. Raghunathan, and N. R. Aluru, Appl. Phys. Lett. 92, 133120 (2008).
http://dx.doi.org/10.1063/1.2907333
28.
28. T. A. Hilder, D. Gordon, and S.-H. Chung, Small 5, 2870 (2009).
http://dx.doi.org/10.1002/smll.200901229
29.
29. T. A. Hilder, D. Gordon, and S.-H. Chung, Small 5, 2183 (2009).
http://dx.doi.org/10.1002/smll.200900349
30.
30. C. Y. Won and N. R. Aluru, Chem. Phys. Lett. 478, 185 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.07.064
31.
31. M. Khademi and M. Sahimi, J. Chem. Phys. 135, 204509 (2011).
http://dx.doi.org/10.1063/1.3663620
32.
32. R. Yang, T. A. Hilder, S.-H. Chung, and A. Rendell, J. Phys. Chem. C 115, 17255 (2011).
http://dx.doi.org/10.1021/jp201882d
33.
33. F. M. Garakani and R. Kalantarinejad, Int. J. Nano Dim. 2, 151 (2012).
34.
34. T. A. Hilder, R. Yang, D. Gordon, A. P. Rendell, and S.-H. Chung, J. Phys. Chem. C 116, 4465 (2012).
http://dx.doi.org/10.1021/jp2113335
35.
35. D. Mattia and F. Calabrò, Microfluid. Nanofluid. 13, 125 (2012).
http://dx.doi.org/10.1007/s10404-012-0949-z
36.
36. F. Zhu, E. Tajkhorshid, and K. Schulten, Biophys. J. 83, 154 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75157-6
37.
37. G. Raabe and R. J. Sadus, J. Chem. Phys. 137, 104512 (2012).
http://dx.doi.org/10.1063/1.4749382
38.
38. S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys. 138, 094701 (2013).
http://dx.doi.org/10.1063/1.4793396
39.
39. J. Koplik, J. R. Banavar, and J. F. Willemsen, Phys. Rev. Lett. 60, 1282 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1282
40.
40. K. P. Travis and K. E. Gubbins, J. Chem. Phys. 112, 1984 (2000).
http://dx.doi.org/10.1063/1.480758
41.
41. X.-J. Fan, N. Phan-Thien, N. T. Yong, and X. Diao, Phys. Fluids 14, 1146 (2002).
http://dx.doi.org/10.1063/1.1447916
42.
42. L. Wang, R. S. Dumont, and J. M. Dickson, J. Chem. Phys. 138, 124701 (2013).
http://dx.doi.org/10.1063/1.4794685
43.
43. F. Zhu, E. Tajkhorshid, and K. Schulten, Biophys. J. 86, 50 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74082-5
44.
44. M. K. Borg, D. A. Lockerby, and J. M. Reese, Microfluid. Nanofluid. 15, 541 (2013).
http://dx.doi.org/10.1007/s10404-013-1168-y
45.
45. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
46.
46. C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
47.
47. D. J. Huggins, J. Chem. Phys. 136, 064518 (2012).
http://dx.doi.org/10.1063/1.3683447
48.
48. V. P. Sokhan, D. Nicholson, and N. Quirke, J. Chem. Phys. 117, 8531 (2002).
http://dx.doi.org/10.1063/1.1512643
49.
49. T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003).
http://dx.doi.org/10.1021/jp0268112
50.
50. A. Alexiadis and S. Kassinos, Chem. Rev. 108, 5014 (2008).
http://dx.doi.org/10.1021/cr078140f
51.
51. J. S. Hansen, T. B. Schrøder, and J. C. Dyre, J. Phys. Chem. B 116, 5738 (2012).
http://dx.doi.org/10.1021/jp300750g
52.
52. L. A. J. Bastien, P. N. Price, and N. J. Brown, Int. J. Chem. Kinet. 42, 713 (2010).
http://dx.doi.org/10.1002/kin.20521
53.
53. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, 2002).
54.
54. J. A. Thomas and A. J. H. McGaughey, Nano Lett. 8, 2788 (2008).
http://dx.doi.org/10.1021/nl8013617
55.
55. F. Calabrò, K. P. Lee, and D. Mattia, Appl. Math. Lett. 26, 991 (2013).
http://dx.doi.org/10.1016/j.aml.2013.05.004
56.
56. J. H. Park and N. R. Aluru, J. Phys. Chem. C 114, 2595 (2010).
http://dx.doi.org/10.1021/jp907512z
57.
57. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature 438, 44 (2005).
http://dx.doi.org/10.1038/438044a
58.
58. F. Du, L. Qu, Z. Xia, L. Feng, and L. Dai, Langmuir 27, 8437 (2011).
http://dx.doi.org/10.1021/la200995r
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/1/10.1063/1.4846300
Loading
/content/aip/journal/jcp/140/1/10.1063/1.4846300
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/1/10.1063/1.4846300
2014-01-02
2016-12-02

Abstract

The high water flow rates observed in carbon nanotubes (CNTs) have previously been attributed to the unfavorable energetic interaction between the liquid and the graphitic walls of the CNTs. This paper reports molecular dynamics simulations of water flow in carbon, boron nitride, and silicon carbide nanotubes that show the effect of the solid-liquid interactions on the fluid flow. Alongside an analytical model, these results show that the flow enhancement depends on the tube's geometric characteristics and the solid-liquid interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/1/1.4846300.html;jsessionid=EbvF0OkIqTIWl0nFVKSlo68c.x-aip-live-06?itemId=/content/aip/journal/jcp/140/1/10.1063/1.4846300&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/1/10.1063/1.4846300&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/1/10.1063/1.4846300'
Right1,Right2,Right3,