1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Perspective: Tipping the scales: Search for drifting constants from molecular spectra
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/1/10.1063/1.4853735
1.
1. V. V. Flambaum, D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Rev. D 69, 115006 (2004).
http://dx.doi.org/10.1103/PhysRevD.69.115006
2.
2. M. Born, Proc. Indian Acad. Sci., Sect. A 2, 533 (1935).
3.
3. C. J. Hogan, Rev. Mod. Phys. 72, 1149 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.1149
4.
4. J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).
http://dx.doi.org/10.1103/PhysRevD.25.1527
5.
5. H. B. Sandvik, J. D. Barrow, and J. Magueijo, Phys. Rev. Lett. 88, 031302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.031302
6.
6. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
7.
7. J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.171104
8.
8. J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, Phys. Rev. Lett. 82, 884 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.884
9.
9. V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. Lett. 82, 888 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.888
10.
10. J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107, 191101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.191101
11.
11. J. A. King, J. K. Webb, M. T. Murphy, V. V. Flambaum, R. F. Carswell, M. B. Bainbridge, M. R. Wilczynska, and F. E. Koch, Mon. Not. R. Astron. Soc. 422, 3370 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.20852.x
12.
12. V. V. Flambaum and A. F. Tedesco, Phys. Rev. C 73, 055501 (2006).
http://dx.doi.org/10.1103/PhysRevC.73.055501
13.
13. J. C. Berengut, V. V. Flambaum, and E. M. Kava, Phys. Rev. A 84, 042510 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.042510
14.
14. P. Tzanavaris, J. K. Webb, M. T. Murphy, V. V. Flambaum, and S. J. Curran, Phys. Rev. Lett. 95, 041301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.041301
15.
15. M. G. Kozlov, Phys. Rev. A 80, 022118 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.022118
16.
16. S. A. Levshakov, F. Combes, F. Boone, I. I. Agafonova, D. Reimers, and M. G. Kozlov, Astron. Astrophys. 540, L9 (2012).
http://dx.doi.org/10.1051/0004-6361/201219042
17.
17. X. Calmet and H. Fritsch, Eur. Phys. J. C 24, 639 (2002).
http://dx.doi.org/10.1007/s10052-002-0976-0
18.
18. S. Schiller and V. Korobov, Phys. Rev. A 71, 032505 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.032505
19.
19. V. I. Korobov and Z.-X. Zhong, Phys. Rev. A 86, 044501 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.044501
20.
20. P. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1527
21.
21.Note that spectroscopic transitions in molecules probe the inertial or kinematic mass, as it enters in the Schrdinger equation, rather than a gravitational mass.
22.
22. A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-Klein, Phys. Rev. Lett. 100, 150801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.150801
23.
23. J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003), and references therein.
http://dx.doi.org/10.1103/RevModPhys.75.403
24.
24. M. G. Kozlov and S. A. Levshakov, Ann. Phys. (Berlin) 525, 452 (2013).
http://dx.doi.org/10.1002/andp.201300010
25.
25. E. Reinhold, R. Buning, U. Hollenstein, A. Ivanchik, P. Petitjean, and W. Ubachs, Phys. Rev. Lett. 96, 151101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.151101
26.
26. W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, J. Mol. Spectrosc. 241, 155 (2007).
http://dx.doi.org/10.1016/j.jms.2006.12.004
27.
27. E. J. Salumbides, M. L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, and W. Ubachs, Phys. Rev. A 86, 022510 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.022510
28.
28. T. Dent, J. Cosmol. Astropart. Phys. 2007, 013 (2007).
http://dx.doi.org/10.1088/1475-7516/2007/01/013
29.
29. D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, Phys. Rev. Lett. 100, 043202 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.043202
30.
30. K. Beloy, M. G. Kozlov, A. Borschevsky, A. W. Hauser, V. V. Flambaum, and P. Schwerdtfeger, Phys. Rev. A 83, 062514 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.062514
31.
31. V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.150801
32.
32. H. L. Bethlem and W. Ubachs, Faraday Discuss. 142, 25 (2009).
http://dx.doi.org/10.1039/b819099b
33.
33. V. V. Flambaum, Phys. Rev. A 73, 034101 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.034101
34.
34. J. van Veldhoven, J. Küpper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, Eur. Phys. J. D 31, 337 (2004).
http://dx.doi.org/10.1140/epjd/e2004-00160-9
35.
35. V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 98, 240801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.240801
36.
36. M. G. Kozlov and S. A. Levshakov, Astrophys. J. 726, 65 (2011).
http://dx.doi.org/10.1088/0004-637X/726/2/65
37.
37. P. Jansen, L.-H. Xu, I. Kleiner, W. Ubachs, and H. L. Bethlem, Phys. Rev. Lett. 106, 100801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.100801
38.
38. M. G. Kozlov, Phys. Rev. A 87, 032104 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.032104
39.
39. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.070802
40.
40. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, Phys. Rev. Lett. 109, 230801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.230801
41.
41. T. Zelevinsky, S. Kotochigova, and J. Ye, Phys. Rev. Lett. 100, 043201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.043201
42.
42. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science 319, 1808 (2008).
http://dx.doi.org/10.1126/science.1154622
43.
43. S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grunert, C. Vian, F. P. Dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, J. Phys. B 38, S449 (2005).
http://dx.doi.org/10.1088/0953-4075/38/9/002
44.
44. R. I. Thompson, Astrophys. Lett. 16, 3 (1975).
45.
45. D. Varshalovich and S. Levshakov, JETP Lett. 58, 237 (1993).
46.
46. V. Meshkov, A. Stolyarov, A. Ivanchik, and D. Varshalovich, JETP Lett. 83, 303 (2006).
http://dx.doi.org/10.1134/S0021364006080017
47.
47. J. L. Dunham, Phys. Rev. 41, 721 (1932).
http://dx.doi.org/10.1103/PhysRev.41.721
48.
48. N. Bohr, Nature (London) 92, 231 (1913).
http://dx.doi.org/10.1038/092231d0
49.
49. S. C. Xu, R. van Dierendonck, W. Hogervorst, and W. Ubachs, J. Mol. Spectrosc. 201, 256 (2000).
http://dx.doi.org/10.1006/jmsp.2000.8085
50.
50. T. I. Ivanov, G. D. Dickenson, M. Roudjane, N. De Oliveira, D. Joyeux, L. Nahon, W.-Ü. L. Tchang-Brillet, and W. Ubachs, Mol. Phys. 108, 771 (2010).
http://dx.doi.org/10.1080/00268971003649307
51.
51. W. Ubachs, K. S. E. Eikema, W. Hogervorst, and P. C. Cacciani, J. Opt. Soc. Am. B 14, 2469 (1997).
http://dx.doi.org/10.1364/JOSAB.14.002469
52.
52. J. Philip, J. P. Sprengers, T. Pielage, C. A. de Lange, W. Ubachs, and E. Reinhold, Can. J. Chem. 82, 713 (2004).
http://dx.doi.org/10.1139/v04-042
53.
53. J. Philip, J. Sprengers, P. Cacciani, C. de Lange, and W. Ubachs, Appl. Phys. B 78, 737 (2004).
http://dx.doi.org/10.1007/s00340-004-1470-1
54.
54. T. I. Ivanov, M. O. Vieitez, C. A. de Lange, and W. Ubachs, J. Phys. B 41, 035702 (2008).
http://dx.doi.org/10.1088/0953-4075/41/3/035702
55.
55. U. Hollenstein, E. Reinhold, C. A. de Lange, and W. Ubachs, J. Phys. B 39, L195 (2006).
http://dx.doi.org/10.1088/0953-4075/39/8/L02
56.
56. T. I. Ivanov, M. Roudjane, M. O. Vieitez, C. A. de Lange, W.-Ü. L. Tchang-Brillet, and W. Ubachs, Phys. Rev. Lett. 100, 093007 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.093007
57.
57. E. J. Salumbides, D. Bailly, A. Khramov, A. L. Wolf, K. S. E. Eikema, M. Vervloet, and W. Ubachs, Phys. Rev. Lett. 101, 223001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.223001
58.
58. D. Bailly, E. Salumbides, M. Vervloet, and W. Ubachs, Mol. Phys. 108, 827 (2010).
http://dx.doi.org/10.1080/00268970903413350
59.
59. A. L. Malec, R. Buning, M. T. Murphy, N. Milutinovic, S. L. Ellison, J. X. Prochaska, L. Kaper, J. Tumlinson, R. F. Carswell, and W. Ubachs, Mon. Not. R. Astron Soc. 403, 1541 (2010).
http://dx.doi.org/10.1111/j.1365-2966.2009.16227.x
60.
60. F. van Weerdenburg, M. T. Murphy, A. L. Malec, L. Kaper, and W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.180802
61.
61. J. Bagdonaite, M. T. Murphy, L. Kaper, and W. Ubachs, Mon. Not. R. Astron. Soc. 421, 419 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2011.20319.x
62.
62. A. J. de Nijs, W. Ubachs, and H. L. Bethlem, Phys. Rev. A 86, 032501 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.032501
63.
63. A. J. de Nijs, E. J. Salumbides, K. S. E. Eikema, W. Ubachs, and H. L. Bethlem, Phys. Rev. A 84, 052509 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.052509
64.
64. R. Srianand, P. Noterdaeme, C. Ledoux, and P. Petitjean, Astron. Astrophys. 482, L39 (2008).
http://dx.doi.org/10.1051/0004-6361:200809727
65.
65. P. Noterdaeme, C. Ledoux, R. Srianand, P. Petitjean, and S. Lopez, Astron. Astrophys. 503, 765 (2009).
http://dx.doi.org/10.1051/0004-6361/200912330
66.
66. P. Noterdaeme, P. Petitjean, C. Ledoux, S. López, R. Srianand, and S. D. Vergani, Astron. Astrophys. 523, A80 (2010).
http://dx.doi.org/10.1051/0004-6361/201015147
67.
67. P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux, and S. López, Astron. Astrophys. 526, L7 (2011).
http://dx.doi.org/10.1051/0004-6361/201016140
68.
68. M. Niu, E. J. Salumbides, D. Zhao, N. De Oliveira, D. Joyeux, L. Nahon, R. W. Field, and W. Ubachs, Mol. Phys. 111, 2163 (2013).
http://dx.doi.org/10.1080/00268976.2013.793889
69.
69. J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge University Press, 2003).
70.
70. R. S. Freund and W. Klemperer, J. Chem. Phys. 43, 2422 (1965).
http://dx.doi.org/10.1063/1.1697141
71.
71. B. G. Wicke, R. W. Field, and W. Klemperer, J. Chem. Phys. 56, 5758 (1972).
http://dx.doi.org/10.1063/1.1677113
72.
72. R. J. Saykally, T. A. Dixon, T. G. Anderson, P. G. Szanto, and R. C. Woods, J. Chem. Phys. 87, 6423 (1987).
http://dx.doi.org/10.1063/1.453473
73.
73. S. Yamamoto and S. Saito, J. Chem. Phys. 89, 1936 (1988).
http://dx.doi.org/10.1063/1.455091
74.
74. J. Darling, Phys. Rev. Lett. 91, 011301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.011301
75.
75. E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Phys. Rev. Lett. 96, 143004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.143004
76.
76. S. Truppe, R. J. Hendricks, S. K. Tokunaga, H. J. Lewandowski, M. G. Kozlov, C. Henkel, E. A. Hinds, and M. R. Tarbutt, Nature Commun. 4, 2600 (2013).
http://dx.doi.org/10.1038/ncomms3600
77.
77. D. M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41, 313 (1932).
http://dx.doi.org/10.1103/PhysRev.41.313
78.
78. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975).
79.
79. N. Kanekar, Astrophys. J. Lett. 728, L12 (2011).
http://dx.doi.org/10.1088/2041-8205/728/1/L12
80.
80. C. Henkel, K. M. Menten, M. T. Murphy, N. Jethava, V. V. Flambaum, J. A. Braatz, S. Muller, J. Ott, and R. Q. Mao, Astron. Astrophys. 500, 725 (2009).
http://dx.doi.org/10.1051/0004-6361/200811475
81.
81. H. L. Bethlem, M. Kajita, B. Sartakov, G. Meijer, and W. Ubachs, Eur. Phys. J. Spec. Top. 163, 55 (2008).
http://dx.doi.org/10.1140/epjst/e2008-00809-5
82.
82. M. G. Kozlov, A. V. Lapinov, and S. A. Levshakov, J. Phys. B 43, 074003 (2010).
http://dx.doi.org/10.1088/0953-4075/43/7/074003
83.
83. D. Laughton, S. Freund, and T. Oka, J. Mol. Spectrosc. 62, 263 (1976).
http://dx.doi.org/10.1016/0022-2852(76)90354-4
84.
84. M. G. Kozlov, S. G. Porsev, and D. Reimers, Phys. Rev. A 83, 052123 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.052123
85.
85. D. Kivelson, J. Chem. Phys. 22, 1733 (1954).
http://dx.doi.org/10.1063/1.1739886
86.
86. C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841 (1959).
http://dx.doi.org/10.1103/RevModPhys.31.841
87.
87. D. R. Herschbach, J. Chem. Phys. 31, 91 (1959).
http://dx.doi.org/10.1063/1.1730343
88.
88. B. Kirtman, J. Chem. Phys. 37, 2516 (1962).
http://dx.doi.org/10.1063/1.1733049
89.
89. R. M. Lees and J. B. Baker, J. Chem. Phys. 48, 5299 (1968).
http://dx.doi.org/10.1063/1.1668221
90.
90. R. M. Lees, Astrophys. J. 184, 763 (1973).
http://dx.doi.org/10.1086/152368
91.
91. S. A. Levshakov, M. G. Kozlov, and D. Reimers, Astrophys. J. 738, 26 (2011).
http://dx.doi.org/10.1088/0004-637X/738/1/26
92.
92. J. D. Swalen, J. Chem. Phys. 23, 1739 (1955).
http://dx.doi.org/10.1063/1.1742449
93.
93. P. Jansen, I. Kleiner, L.-H. Xu, W. Ubachs, and H. L. Bethlem, Phys. Rev. A 84, 062505 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.062505
94.
94. V. V. Ilyushin, P. Jansen, M. G. Kozlov, S. A. Levshakov, I. Kleiner, W. Ubachs, and H. L. Bethlem, Phys. Rev. A 85, 032505 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.032505
95.
95. J. T. Hougen, I. Kleiner, and M. Godefroid, J. Mol. Spectrosc. 163, 559 (1994) (program available at http://www.ifpan.edu.pl/~kisiel/introt/introt.htm#belgi).
http://dx.doi.org/10.1006/jmsp.1994.1047
96.
96. L. H. Xu, R. M. Lees, and J. T. Hougen, J. Chem. Phys. 110, 3835 (1999).
http://dx.doi.org/10.1063/1.478272
97.
97. L. H. Xu, J. Fisher, R. M. Lees, H. Y. Shi, J. T. Hougen, J. C. Pearson, B. J. Drouin, G. A. Blake, and R. Braakman, J. Mol. Spectrosc. 251, 305 (2008), and references therein.
http://dx.doi.org/10.1016/j.jms.2008.03.017
98.
98. J. Bagdonaite, P. Jansen, C. Henkel, H. L. Bethlem, K. M. Menten, and W. Ubachs, Science 339, 46 (2013).
http://dx.doi.org/10.1126/science.1224898
99.
99. S. Muller, A. Beelen, M. Guélin, S. Aalto, J. H. Black, F. Combes, S. Curran, P. Theule, and S. Longmore, Astron. Astrophys. 535, A103 (2011).
http://dx.doi.org/10.1051/0004-6361/201117096
100.
100. M. G. Kozlov, Phys. Rev. A 84, 042120 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.042120
101.
101. P. Jansen, L.-H. Xu, I. Kleiner, H. L. Bethlem, and W. Ubachs, Phys. Rev. A 87, 052509 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.052509
102.
102. J. A. King, J. K. Webb, M. T. Murphy, and R. F. Carswell, Phys. Rev. Lett. 101, 251304 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.251304
103.
103. J. A. King, M. T. Murphy, W. Ubachs, and J. K. Webb, Mon. Not. R. Astron. Soc. 417, 3010 (2011).
http://dx.doi.org/10.1111/j.1365-2966.2011.19460.x
104.
104. M. Wendt and P. Molaro, Astron. Astrophys. 541, A69 (2012).
http://dx.doi.org/10.1051/0004-6361/201218862
105.
105. M. T. Murphy, V. V. Flambaum, S. Muller, and C. Henkel, Science 320, 1611 (2008).
http://dx.doi.org/10.1126/science.1156352
106.
106. M. Tsuboi, A. Y. Hirakawa, T. Ino, T. Sasaki, and K. Tamagake, J. Chem. Phys. 41, 2721 (1964).
http://dx.doi.org/10.1063/1.1726344
107.
107. J. Bagdonaite, M. Daprà, P. Jansen, H. L. Bethlem, W. Ubachs, S. Muller, C. Henkel, and K. M. Menten, Phys. Rev. Lett. 111, 231101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.231101
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/1/10.1063/1.4853735
Loading
/content/aip/journal/jcp/140/1/10.1063/1.4853735
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/1/10.1063/1.4853735
2014-01-02
2014-10-31

Abstract

Transitions in atoms and molecules provide an ideal test ground for constraining or detecting a possible variation of the fundamental constants of nature. In this perspective, we review molecular species that are of specific interest in the search for a drifting proton-to-electron mass ratio μ. In particular, we outline the procedures that are used to calculate the sensitivity coefficients for transitions in these molecules and discuss current searches. These methods have led to a rate of change in μ bounded to 6 × 10−14/yr from a laboratory experiment performed in the present epoch. On a cosmological time scale, the variation is limited to |Δμ/μ| < 10−5 for look-back times of 10–12× 109 years and to |Δμ/μ| < 10−7 for look-back times of 7× 109 years. The last result, obtained from high-redshift observation of methanol, translates into /yr if a linear rate of change is assumed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/1/1.4853735.html;jsessionid=1s18qvpc2vid6.x-aip-live-03?itemId=/content/aip/journal/jcp/140/1/10.1063/1.4853735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Tipping the scales: Search for drifting constants from molecular spectra
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/1/10.1063/1.4853735
10.1063/1.4853735
SEARCH_EXPAND_ITEM