Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Criegee and G. Wenner, Justus Liebig Ann. Chem. 564, 9 (1949).
2. R. Criegee, Angew. Chem., Int. Ed. Engl. 14, 745 (1975).
3. R. Atkinson and J. Arey, Chem. Rev. 103, 4605 (2003).
4. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
5. H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, and M. D. Hurley, J. Phys. Chem. 91, 941 (1987).
6. J. H. Kroll, T. F. Hanisco, N. M. Donahue, K. L. Demerjian, and J. G. Anderson, Geophys. Res. Lett. 28, 3863, doi:10.1029/2001GL013406 (2001);
6.J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A 105, 1554 (2001);
6.J. H. Kroll, N. M. Donahue, V. J. Cee, K. L. Demerjian, and J. G. Anderson, J. Am. Chem. Soc. 124, 8518 (2002).
7. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
8. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
9. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
10. M. Nakajima and Y. Endo, J. Chem. Phys. 139, 101103 (2013).
11. M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, T. L. Nguyen, C. C. Womack, and J. F. Stanton, J. Phys. Chem. Lett. 4, 4133 (2013).
12. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see
13.See supplementary material at for the ab initio geometries and the observed transition frequencies. [Supplementary Material]
14. K. T. Kuwata, M. R. Hermes, J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
15. Y. Endo, H. Kohguchi, and Y. Ohshima, Faraday Discuss. 97, 341 (1994).
16. T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).
17. Y. Sumiyoshi, H. Katsunuma, K. Suma, and Y. Endo, J. Chem. Phys. 123, 054324 (2005).
18. W. Gordy and R. L. Cook, Microwave Molecular Spectra (John Wiley Sons, New York, 1984).
19. H. Hartwig and H. Dreizler, Z. Naturforsch. 51a, 923 (1996).
20. R. C. Woods, J. Mol. Spectrosc. 21, 4 (1966).
21. I. Kleiner, J. T. Hougen, J.-U. Grabow, S. P. Belov, M. Yu. Tretyyakov, and J. Cosléou, J. Mol. Spectrosc. 179, 41 (1996).
22. L.-H. Xu and J. T. Hougen, J. Mol. Spectrosc. 173, 540 (1995).
23. K. Katoh, Ph.D. thesis, the University of Tokyo, 2007.

Data & Media loading...


Article metrics loading...



An alkyl-substituted Criegee intermediate -CHCHOO was detected in the gas phase through Fourier-transform microwave spectroscopy. Observed pure rotational transitions show a small splitting corresponding to the / components due to the threefold methyl internal rotation. The rotational constants and the barrier height of the hindered methyl rotation were determined to be = 17 586.5295(15) MHz, = 7133.4799(41) MHz, = 5229.1704(40) MHz, and = 837.1(17) cm−1. High-level calculations which reproduce the experimentally determined values well indicate that the in-plane C–H bond in the methyl moiety is to the C–O bond, and other two protons are directed to the terminal oxygen atom for the most stable structure of -CHCHOO. The torsional barrier of the methyl top is fairly large in -CHCHOO, implying a significant interaction between the terminal oxygen and the protons of the methyl moiety, which may be responsible for the high production yields of the OH radical from energized alkyl-substituted Criegee intermediates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd