1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH3CHOO through pure rotational transitions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/1/10.1063/1.4861494
1.
1. R. Criegee and G. Wenner, Justus Liebig Ann. Chem. 564, 9 (1949).
http://dx.doi.org/10.1002/jlac.19495640103
2.
2. R. Criegee, Angew. Chem., Int. Ed. Engl. 14, 745 (1975).
http://dx.doi.org/10.1002/anie.197507451
3.
3. R. Atkinson and J. Arey, Chem. Rev. 103, 4605 (2003).
http://dx.doi.org/10.1021/cr0206420
4.
4. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
http://dx.doi.org/10.1039/b704260b
5.
5. H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, and M. D. Hurley, J. Phys. Chem. 91, 941 (1987).
http://dx.doi.org/10.1021/j100288a035
6.
6. J. H. Kroll, T. F. Hanisco, N. M. Donahue, K. L. Demerjian, and J. G. Anderson, Geophys. Res. Lett. 28, 3863, doi:10.1029/2001GL013406 (2001);
http://dx.doi.org/10.1029/2001GL013406
6.J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A 105, 1554 (2001);
http://dx.doi.org/10.1021/jp002121r
6.J. H. Kroll, N. M. Donahue, V. J. Cee, K. L. Demerjian, and J. G. Anderson, J. Am. Chem. Soc. 124, 8518 (2002).
http://dx.doi.org/10.1021/ja0266060
7.
7. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
http://dx.doi.org/10.1126/science.1234689
8.
8. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
http://dx.doi.org/10.1063/1.4810865
9.
9. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
http://dx.doi.org/10.1126/science.1234369
10.
10. M. Nakajima and Y. Endo, J. Chem. Phys. 139, 101103 (2013).
http://dx.doi.org/10.1063/1.4821165
11.
11. M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, T. L. Nguyen, C. C. Womack, and J. F. Stanton, J. Phys. Chem. Lett. 4, 4133 (2013).
http://dx.doi.org/10.1021/jz4023128
12.
12. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4861494 for the ab initio geometries and the observed transition frequencies. [Supplementary Material]
14.
14. K. T. Kuwata, M. R. Hermes, J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
http://dx.doi.org/10.1021/jp105358v
15.
15. Y. Endo, H. Kohguchi, and Y. Ohshima, Faraday Discuss. 97, 341 (1994).
http://dx.doi.org/10.1039/fd9949700341
16.
16. T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).
http://dx.doi.org/10.1063/1.1136443
17.
17. Y. Sumiyoshi, H. Katsunuma, K. Suma, and Y. Endo, J. Chem. Phys. 123, 054324 (2005).
http://dx.doi.org/10.1063/1.1943967
18.
18. W. Gordy and R. L. Cook, Microwave Molecular Spectra (John Wiley Sons, New York, 1984).
19.
19. H. Hartwig and H. Dreizler, Z. Naturforsch. 51a, 923 (1996).
20.
20. R. C. Woods, J. Mol. Spectrosc. 21, 4 (1966).
http://dx.doi.org/10.1016/0022-2852(66)90117-2
21.
21. I. Kleiner, J. T. Hougen, J.-U. Grabow, S. P. Belov, M. Yu. Tretyyakov, and J. Cosléou, J. Mol. Spectrosc. 179, 41 (1996).
http://dx.doi.org/10.1006/jmsp.1996.0182
22.
22. L.-H. Xu and J. T. Hougen, J. Mol. Spectrosc. 173, 540 (1995).
http://dx.doi.org/10.1006/jmsp.1995.1255
23.
23. K. Katoh, Ph.D. thesis, the University of Tokyo, 2007.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/1/10.1063/1.4861494
Loading
/content/aip/journal/jcp/140/1/10.1063/1.4861494
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/1/10.1063/1.4861494
2014-01-06
2015-04-18

Abstract

An alkyl-substituted Criegee intermediate -CHCHOO was detected in the gas phase through Fourier-transform microwave spectroscopy. Observed pure rotational transitions show a small splitting corresponding to the / components due to the threefold methyl internal rotation. The rotational constants and the barrier height of the hindered methyl rotation were determined to be = 17 586.5295(15) MHz, = 7133.4799(41) MHz, = 5229.1704(40) MHz, and = 837.1(17) cm−1. High-level calculations which reproduce the experimentally determined values well indicate that the in-plane C–H bond in the methyl moiety is to the C–O bond, and other two protons are directed to the terminal oxygen atom for the most stable structure of -CHCHOO. The torsional barrier of the methyl top is fairly large in -CHCHOO, implying a significant interaction between the terminal oxygen and the protons of the methyl moiety, which may be responsible for the high production yields of the OH radical from energized alkyl-substituted Criegee intermediates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/1/1.4861494.html;jsessionid=208r1rfo3ijog.x-aip-live-02?itemId=/content/aip/journal/jcp/140/1/10.1063/1.4861494&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH3CHOO through pure rotational transitions
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/1/10.1063/1.4861494
10.1063/1.4861494
SEARCH_EXPAND_ITEM