1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Computational study of the rovibrational spectrum of CO2–CS2
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4867792
1.
1. J. Tennyson, Comput. Phys. Rep. 4, 1 (1986).
http://dx.doi.org/10.1016/0167-7977(86)90005-5
2.
2. P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, 1998).
3.
3. G. Brocks, A. van der Avoird, B. Sutcliffe, and J. Tennyson, Mol. Phys. 50, 1025 (1983).
http://dx.doi.org/10.1080/00268978300102831
4.
4. P. R. Bunker, Annu. Rev. Phys. Chem. 34, 59 (1983).
http://dx.doi.org/10.1146/annurev.pc.34.100183.000423
5.
5. Z. Bacic and J. Light, Annu. Rev. Phys. Chem. 40, 469 (1989).
http://dx.doi.org/10.1146/annurev.pc.40.100189.002345
6.
6. D. J. Nesbitt, Chem. Rev. 88, 843 (1988).
http://dx.doi.org/10.1021/cr00088a003
7.
7. J. M. Hutson, Annu. Rev. Phys. Chem. 41, 123 (1990).
http://dx.doi.org/10.1146/annurev.pc.41.100190.001011
8.
8. R. C. Cohen and R. J. Saykally, Annu. Rev. Phys. Chem. 42, 369 (1991).
http://dx.doi.org/10.1146/annurev.pc.42.100191.002101
9.
9. R. E. Miller, Science 240, 447 (1988).
http://dx.doi.org/10.1126/science.240.4851.447
10.
10. D. J. Nesbitt, Annu. Rev. Phys. Chem. 45, 367 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.002055
11.
11. R. J. Le Roy and J. S. Carley, “Spectroscopy and potential energy surfaces of van der Waals molecules,” Advances in Chemical Physics (John Wiley & Sons, Inc., 2007), pp. 353420.
12.
12. A. van der Avoird, P. E. S. Wormer, and R. Moszynski, Chem. Rev. 94, 1931 (1994).
http://dx.doi.org/10.1021/cr00031a009
13.
13. T. Carrington and X.-G. Wang, WIREs: Comput. Mol. Sci. 1, 952 (2011).
http://dx.doi.org/10.1002/wcms.73
14.
14. R. Dawes, X.-G. Wang, A. W. Jasper, and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
http://dx.doi.org/10.1063/1.3494542
15.
15. X.-G. Wang, T. Carrington Jr., J. Tang, and A. R. W. McKellar, J. Chem. Phys. 123, 034301 (2005).
http://dx.doi.org/10.1063/1.1924408
16.
16. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, Molecular Potential Energy Surfaces (Wiley, New York, 1984).
17.
17. T. Hollebeek, T.-S. Ho, and H. Rabitz, Annu. Rev. Phys. Chem. 50, 537 (1999).
http://dx.doi.org/10.1146/annurev.physchem.50.1.537
18.
18. M. J. T. Jordan, K. C. Thompson, and M. A. Collins, J. Chem. Phys. 102, 5647 (1995).
http://dx.doi.org/10.1063/1.469296
19.
19. M. A. Collins, Theor. Chem. Acc. 108, 313 (2002).
http://dx.doi.org/10.1007/s00214-002-0383-5
20.
20. S. Manzhos and T. Carrington, J. Chem. Phys. 125, 194105 (2006).
http://dx.doi.org/10.1063/1.2387950
21.
21. S. Manzhos and T. Carrington, J. Chem. Phys. 127, 014103 (2007).
http://dx.doi.org/10.1063/1.2746846
22.
22. B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
http://dx.doi.org/10.1080/01442350903234923
23.
23. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 128, 084107 (2008).
http://dx.doi.org/10.1063/1.2831790
24.
24. R. Dawes, A. Passalacqua, A. F. Wagner, T. D. Sewell, M. Minkoff, and D. L. Thompson, J. Chem. Phys. 130, 144107 (2009).
http://dx.doi.org/10.1063/1.3111261
25.
25. R. Dawes, A. F. Wagner, and D. L. Thompson, J. Phys. Chem. A 113, 4709 (2009).
http://dx.doi.org/10.1021/jp900409r
26.
26. X.-G. Wang, T. Carrington Jr., R. Dawes, and A. W. Jasper, J. Mol. Spectrosc. 268, 53 (2011).
http://dx.doi.org/10.1016/j.jms.2011.03.017
27.
27. J. Brown, X.-G. Wang, R. Dawes, and T. Carrington Jr., J. Chem. Phys. 136, 134306 (2012).
http://dx.doi.org/10.1063/1.3697679
28.
28. M. Aliev and J. Watson, in Molecular Spectroscopy: Modern Research, edited by K. N. RAO (Academic Press, 1985), pp. 167.
29.
29. R. S. Altman, M. D. Marshall, and W. Klemperer, J. Chem. Phys. 77, 4344 (1982).
http://dx.doi.org/10.1063/1.444424
30.
30. S. W. Sharpe, Y. P. Zeng, C. Wittig, and R. A. Beaudet, J. Chem. Phys. 92, 943 (1990).
http://dx.doi.org/10.1063/1.458077
31.
31. A. Sazonov and R. A. Beaudet, J. Phys. Chem. A 102, 2792 (1998).
http://dx.doi.org/10.1021/jp973163r
32.
32. G. T. Fraser, A. S. Pine, R. D. Suenram, D. C. Dayton, and R. E. Miller, J. Chem. Phys. 90, 1330 (1989).
http://dx.doi.org/10.1063/1.456074
33.
33. D. C. Dayton, L. G. Pedersen, and R. E. Miller, J. Chem. Phys. 93, 4560 (1990).
http://dx.doi.org/10.1063/1.458696
34.
34. K. R. Leopold, G. T. Fraser, and W. Klemperer, J. Chem. Phys. 80, 1039 (1984).
http://dx.doi.org/10.1063/1.446830
35.
35. C. C. Dutton, D. A. Dows, R. Eikey, S. Evans, and R. A. Beaudet, J. Phys. Chem. A 102, 6904 (1998).
http://dx.doi.org/10.1021/jp980874w
36.
36. J. Norooz Oliaee, F. Mivehvar, M. Dehghany, and N. Moazzen-Ahmadi, J. Phys. Chem. A 114, 7311 (2010).
http://dx.doi.org/10.1021/jp104305r
37.
37. R. E. Bumgarner, D. J. Pauley, and S. G. Kukolich, J. Chem. Phys. 87, 3749 (1987).
http://dx.doi.org/10.1063/1.452929
38.
38. H. D. Osthoff and W. Jäger, Mol. Phys. 104, 2861 (2006).
http://dx.doi.org/10.1080/00268970600862248
39.
39. R. Dawes, D. L. Thompson, Y. Guo, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 126, 184108 (2007).
http://dx.doi.org/10.1063/1.2730798
40.
40. R. Dawes, X.-G. Wang, and T. Carrington, J. Phys. Chem. A 117, 7612 (2013).
http://dx.doi.org/10.1021/jp404888d
41.
41. I. M. Sobol, USSR Comput. Math. Math. Phys. 16, 236 (1976).
http://dx.doi.org/10.1016/0041-5553(76)90154-3
42.
42. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, et al., Molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
43.
43. K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
44.
44. G. M. Berner, A. L. L. East, M. Afshari, M. Dehghany, N. Moazzen-Ahmadi, and A. R. W. McKellar, J. Chem. Phys. 130, 164305 (2009).
http://dx.doi.org/10.1063/1.3121224
45.
45. L. S. Rothman and L. D. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
http://dx.doi.org/10.1016/0022-4073(81)90026-1
46.
46. D. S. Kummli, H. M. Frey, and S. Leutwyler, J. Chem. Phys. 124, 144307 (2006).
http://dx.doi.org/10.1063/1.2186642
47.
47. F. Gatti and C. Iung, Phys. Rep. 484, 1 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.05.003
48.
48. M. J. Bramley and T. Carrington Jr., J. Chem. Phys. 99, 8519 (1993).
http://dx.doi.org/10.1063/1.465576
49.
49. G. Audi and A. Wapstra, Nucl. Phys. A 595, 409 (1995).
http://dx.doi.org/10.1016/0375-9474(95)00445-9
50.
50. G. Audi and A. Wapstra, Nucl. Phys. A 565, 1 (1993).
http://dx.doi.org/10.1016/0375-9474(93)90024-R
51.
51. X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 114, 1473 (2001).
http://dx.doi.org/10.1063/1.1331357
52.
52. R. Chen and H. Guo, J. Chem. Phys. 114, 1467 (2001).
http://dx.doi.org/10.1063/1.1331356
53.
53. X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 115, 9781 (2001).
http://dx.doi.org/10.1063/1.1407277
54.
54. D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).
http://dx.doi.org/10.1063/1.458900
55.
55. R. Lehoucq, S. Gray, D.-H. Zhang, and J. Light, Comput. Phys. Commun. 109, 15 (1998).
http://dx.doi.org/10.1016/S0010-4655(98)00002-2
56.
56. F. Ribeiro, C. Iung, and C. Leforestier, J. Chem. Phys. 123, 054106 (2005).
http://dx.doi.org/10.1063/1.1997129
57.
57. S.-W. Huang and T. Carrington Jr., Chem. Phys. Lett. 312, 311 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00889-1
58.
58. X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 118, 6946 (2003).
http://dx.doi.org/10.1063/1.1554735
59.
59. X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 121, 2937 (2004).
http://dx.doi.org/10.1063/1.1767093
60.
60. M. J. Bramley, J. W. Tromp, T. Carrington Jr., and G. C. Corey, J. Chem. Phys. 100, 6175 (1994).
http://dx.doi.org/10.1063/1.467273
61.
61. J. C. Tremblay and T. Carrington, J. Chem. Phys. 125, 094311 (2006).
http://dx.doi.org/10.1063/1.2234480
62.
62. J. C. Light and T. Carrington Jr., “Discrete-variable representations and their utilization,” Advances in Chemical Physics (John Wiley & Sons, Inc., 2007), pp. 263310.
63.
63. C. Leforestier, J. Chem. Phys. 101, 7357 (1994).
http://dx.doi.org/10.1063/1.468455
64.
64. J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).
http://dx.doi.org/10.1063/1.448462
65.
65. H. Wei and T. Carrington Jr., J. Chem. Phys. 97, 3029 (1992).
http://dx.doi.org/10.1063/1.463044
66.
66. J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85330-D
67.
67. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
http://dx.doi.org/10.1063/1.462100
68.
68. X.-G. Wang and T. Carrington, J. Phys. Chem. A 111, 10220 (2007).
http://dx.doi.org/10.1021/jp070932q
69.
69.See supplementary material at http://dx.doi.org/10.1063/1.4867792 for the appendixes which include PD plots for the cross and SP fundamentals. [Supplementary Material]
70.
70. D. Papoušek, J. M. R. Stone, and V. Špirko, J. Mol. Spectrosc. 48, 17 (1973).
http://dx.doi.org/10.1016/0022-2852(73)90132-X
71.
71. H. M. Pickett, J. Mol. Spectrosc. 148, 371 (1991).
http://dx.doi.org/10.1016/0022-2852(91)90393-O
72.
72. E. Matyus, C. Fabri, T. Szidarovszky, G. Czako, W. D. Allen, and A. G. Csaszar, J. Chem. Phys. 133, 034113 (2010).
http://dx.doi.org/10.1063/1.3451075
73.
73. C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841 (1959).
http://dx.doi.org/10.1103/RevModPhys.31.841
74.
74. N. Moazzen-Ahmadi and A. R. W. McKellar, private communication, 2013.
75.
75. J. Hougen, P. Bunker, and J. Johns, J. Mol. Spectrosc. 34, 136 (1970).
http://dx.doi.org/10.1016/0022-2852(70)90080-9
76.
76. P. Jensen, Comput. Phys. Rep. 1, 1 (1983).
http://dx.doi.org/10.1016/0167-7977(83)90003-5
77.
77. D. Papousek and R. Aliev, Molecular Vibrational-rotational Spectra: Theory and Applications of High Resolution Infrared, Studies in Physical and Theoretical Chemistry Vol. III (Elsevier, 1982).
78.
78. N. Moazzen-Ahmadi and A. McKellar, Int. Rev. Phys. Chem. 32, 611 (2013).
http://dx.doi.org/10.1080/0144235X.2013.813799
79.
79. R. J. Bemish, P. A. Block, L. G. Pedersen, and R. E. Miller, J. Chem. Phys. 103, 7788 (1995).
http://dx.doi.org/10.1063/1.470194
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4867792
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4867792
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4867792
2014-03-18
2014-08-23

Abstract

A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO–CS. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (−oo) of the upper component of the tunneling doublet is different from the symmetry (−ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm−1. Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4867792.html;jsessionid=msnsa6702wf2.x-aip-live-06?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4867792&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Computational study of the rovibrational spectrum of CO2–CS2
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4867792
10.1063/1.4867792
SEARCH_EXPAND_ITEM