1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4867900
1.
1. C. Hardacre, J. D. Holbrey, C. L. Mullan, T. G. A. Youngs, and D. T. Bowron, J. Chem. Phys. 133, 074510 (2010).
http://dx.doi.org/10.1063/1.3473825
2.
2. C. Hardacre, J. D. Holbrey, S. E. J. McMath, D. T. Bowron, and A. K. Soper, J. Chem. Phys. 118, 273 (2003).
http://dx.doi.org/10.1063/1.1523917
3.
3. T. Pott and P. Méléard, Phys. Chem. Chem. Phys. 11, 5469 (2009).
http://dx.doi.org/10.1039/b901582e
4.
4. S. Li, G. Feng, J. L. Bañuelos, G. Rother, P. F. Fulvio, S. Dai, and P. T. Cummings, J. Phys. Chem. C 117, 18251 (2013).
http://dx.doi.org/10.1021/jp406381g
5.
5. S. Li, J. L. Bañuelos, J. Guo, L. Anovitz, G. Rother, R. W. Shaw, P. C. Hillesheim, S. Dai, G. A. Baker, and P. T. Cummings, J. Phys. Chem. Lett. 3, 125 (2012).
http://dx.doi.org/10.1021/jz2013209
6.
6. B. Aoun, A. Goldbach, S. Kohara, J. Wax, M. A. González, and M. Saboungi, J. Phys. Chem. B 114, 12623 (2010).
http://dx.doi.org/10.1021/jp1070715
7.
7. A. E. Bradley, C. Hardacre, J. D. Holbrey, S. Johnston, S. E. J. McMath, and M. Nieuwenhuyzen, Chem. Mater. 14, 629 (2002).
http://dx.doi.org/10.1021/cm010542v
8.
8. M. Macchiagodena, F. Ramondo, A. Triolo, L. Gontrani, and R. Caminiti, J. Phys. Chem. B 116, 13448 (2012).
http://dx.doi.org/10.1021/jp306982e
9.
9. E. Bodo, L. Gontrani, R. Caminiti, N. V. Plechkova, K. R. Seddon, and A. Triolo, J. Phys. Chem. B 114, 16398 (2010).
http://dx.doi.org/10.1021/jp1093299
10.
10. S. Fukuda, M. Takeuchi, K. Fujii, R. Kanzaki, T. Takamuku, K. Chiba, H. Yamamoto, Y. Umebayashi, and S. Ishiguro, J. Mol. Liq. 143, 2 (2008).
http://dx.doi.org/10.1016/j.molliq.2008.02.012
11.
11. W. Jiang, Y. Wang, and G. A. Voth, J. Phys. Chem. B 111, 4812 (2007).
http://dx.doi.org/10.1021/jp067142l
12.
12. O. Borodin, W. Gorecki, G. D. Smith, and M. Armand, J. Phys. Chem. B 114, 6786 (2010).
http://dx.doi.org/10.1021/jp911950q
13.
13. S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004).
http://dx.doi.org/10.1063/1.1635356
14.
14. J. N. A. Canongia Lopes and A. A. H. Pádua, J. Phys. Chem. B 110, 3330 (2006).
http://dx.doi.org/10.1021/jp056006y
15.
15. R. Kanzaki, T. Mitsugi, S. Fukuda, K. Fujii, M. Takeuchi, Y. Soejima, T. Takamuku, T. Yamaguchi, Y. Umebayashi, and S. Ishiguro, J. Mol. Liq. 147, 77 (2009).
http://dx.doi.org/10.1016/j.molliq.2008.10.003
16.
16. M. Macchiagodena, L. Gontrani, F. Ramondo, A. Triolo, and R. Caminiti, J. Chem. Phys. 134, 114521 (2011).
http://dx.doi.org/10.1063/1.3565458
17.
17. L. Gontrani, O. Russina, F. L. Celso, R. Caminiti, G. Annat, and A. Triolo, J. Phys. Chem. B 113, 9235 (2009).
http://dx.doi.org/10.1021/jp808333a
18.
18. O. Russina, L. Gontrani, B. Fazio, D. Lombardo, A. Triolo, and R. Caminiti, Chem. Phys. Lett. 493, 259 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.042
19.
19. A. Triolo, A. Mandanici, O. Russina, V. Rodriguez-Mora, M. Cutroni, C. Hardacre, M. Nieuwenhuyzen, H. Bleif, L. Keller, and M. A. Ramos, J. Phys. Chem. B 110, 21357 (2006).
http://dx.doi.org/10.1021/jp062895t
20.
20. D. Xiao, L. G. Hines, S. Li, R. A. Bartsch, E. L. Quitevis, O. Russina, and A. Triolo, J. Phys. Chem. B 113, 6426 (2009).
http://dx.doi.org/10.1021/jp8102595
21.
21. A. Triolo, O. Russina, B. Fazio, R. Triolo, and E. D. Cola, Chem. Phys. Lett. 457, 362 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.027
22.
22. O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L. G. Hines Jr., R. A. Bartsch, E. L. Quitevis, N. Plechkova, and K. R. Seddon, J. Phys.: Condens. Matter 21, 424121 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424121
23.
23. O. Russina, A. Triolo, L. Gontrani, and R. Caminiti, J. Phys. Chem. Lett. 3, 27 (2012).
http://dx.doi.org/10.1021/jz201349z
24.
24. A. Triolo, O. Russina, H. Bleif, and E. Di Cola, J. Phys. Chem. B 111, 4641 (2007).
http://dx.doi.org/10.1021/jp067705t
25.
25. W. Zheng, A. Mohammed, L. G. Hines, D. Xiao, O. J. Martinez, R. A. Bartsch, S. L. Simon, O. Russina, A. Triolo, and E. L. Quitevis, J. Phys. Chem. B 115, 6572 (2011).
http://dx.doi.org/10.1021/jp1115614
26.
26. K. Shimizu, A. A. H. Pádua, and J. N. Canongia Lopes, J. Phys. Chem. B 114, 15635 (2010).
http://dx.doi.org/10.1021/jp108420x
27.
27. Y. Wang and G. A. Voth, J. Phys. Chem. B 110, 18601 (2006).
http://dx.doi.org/10.1021/jp063199w
28.
28. M. G. Del Pópolo and G. A. Voth, J. Phys. Chem. B 108, 1744 (2004).
http://dx.doi.org/10.1021/jp0364699
29.
29. Y. Wang and G. A. Voth, J. Am. Chem. Soc. 127, 12192 (2005).
http://dx.doi.org/10.1021/ja053796g
30.
30. Y. Wang, W. Jiang, T. Yan, and G. A. Voth, Acc. Chem. Res. 40, 1193 (2007).
http://dx.doi.org/10.1021/ar700160p
31.
31. K. Shimizu, M. F. C. Gomes, A. A. Pádua, L. P. Rebelo, and J. N. C. Lopes, J. Mol. Struct.: THEOCHEM 946, 70 (2010).
http://dx.doi.org/10.1016/j.theochem.2009.11.034
32.
32. A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, and S. Passerini, J. Chem. Phys. 130, 164521 (2009).
http://dx.doi.org/10.1063/1.3119977
33.
33. R. Atkin and G. G. Warr, J. Phys. Chem. B 112, 4164 (2008).
http://dx.doi.org/10.1021/jp801190u
34.
34. B. L. Bhargava, R. Devane, M. L. Klein, and S. Balasubramanian, Soft Matter 3, 1395 (2007).
http://dx.doi.org/10.1039/b710801j
35.
35. T. L. Greaves, D. F. Kennedy, A. Weerawardena, N. M. K. Tse, N. Kirby, and C. J. Drummond, J. Phys. Chem. B 115, 2055 (2011).
http://dx.doi.org/10.1021/jp1112203
36.
36. Y. Umebayashi, H. Hamano, S. Tsuzuki, J. N. Canongia Lopes, A. A. H. Pádua, Y. Kameda, S. Kohara, T. Yamaguchi, K. Fujii, and S. Ishiguro, J. Phys. Chem. B 114, 11715 (2010).
http://dx.doi.org/10.1021/jp1044755
37.
37. H. K. Kashyap, C. S. Santos, H. V. R. Annapureddy, N. S. Murthy, C. J. Margulis, and E. W. Castner Jr., Faraday Discuss. 154, 133 (2012).
http://dx.doi.org/10.1039/c1fd00059d
38.
38. H. V. R. Annapureddy, H. K. Kashyap, P. M. De Biase, and C. J. Margulis, J. Phys. Chem. B 114, 16838 (2010).
http://dx.doi.org/10.1021/jp108545z
39.
39. J. J. Hettige, H. K. Kashyap, H. V. R. Annapureddy, and C. J. Margulis, J. Phys. Chem. Lett. 4, 105 (2013).
http://dx.doi.org/10.1021/jz301866f
40.
40. C. S. Santos, H. V. R. Annapureddy, N. S. Murthy, H. K. Kashyap, E. W. Castner Jr., and C. J. Margulis, J. Chem. Phys. 134, 064501 (2011).
http://dx.doi.org/10.1063/1.3526958
41.
41. H. K. Kashyap, J. J. Hettige, H. V. R. Annapureddy, and C. J. Margulis, Chem. Commun. 48, 5103 (2012).
http://dx.doi.org/10.1039/c2cc30609c
42.
42. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
43.
43. B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
44.
44. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
45.
45. M. L. P. Price, D. Ostrovsky, and W. L. Jorgensen, J. Comput. Chem. 22, 1340 (2001).
http://dx.doi.org/10.1002/jcc.1092
46.
46. J. N. Canongia Lopes and A. A. H. Pádua, J. Phys. Chem. B 108, 16893 (2004).
http://dx.doi.org/10.1021/jp0476545
47.
47. J. N. Canongia Lopes and A. A. Pádua, J. Phys. Chem. B 110, 19586 (2006).
http://dx.doi.org/10.1021/jp063901o
48.
48. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
49.
49. S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
50.
50. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
51.
51. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
52.
52. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
53.
53. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
54.
54. T. Hahn, U. Shmueli, A. A. J. C. Wilson, and E. Prince, International Tables for Crystallography (D. Reidel Publishing Company, 2005).
55.
55. H. K. Kashyap, C. S. Santos, N. S. Murthy, J. J. Hettige, K. Kerr, S. Ramati, J. Gwon, M. Gohdo, S. I. Lall-Ramnarine, J. F. Wishart, C. J. Margulis, and E. W. Castner Jr., J. Phys. Chem. B 117, 15328 (2013).
http://dx.doi.org/10.1021/jp403518j
56.
56.E. Lorch, J. Phys. C: Solid State Phys. 2, 229 (1969).
http://dx.doi.org/10.1088/0022-3719/2/2/305
57.
57. J. Du, C. J. Benmore, R. Corrales, R. T. Hart, and J. K. R. Weber, J. Phys.: Condens. Matter 21, 205102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/20/205102
58.
58. H. K. Kashyap and C. J. Margulis, ECS Trans. 50(11), 301 (2013).
http://dx.doi.org/10.1149/05011.0301ecst
59.
59. H. K. Kashyap, C. S. Santos, R. P. Daly, J. J. Hettige, N. S. Murthy, H. Shirota, E. W. Castner Jr., and C. J. Margulis, J. Phys. Chem. B 117, 1130 (2013).
http://dx.doi.org/10.1021/jp311032p
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4867900
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4867900
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4867900
2014-03-17
2014-09-18

Abstract

In a recent article by the Castner and Margulis groups [Faraday Discuss.154, 133 (2012)], we described in detail the structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid as a function of temperature using X-ray scattering, and theoretical partitions of the computationally derived structure function. Interestingly, and as opposed to the case in most other ionic-liquids, the first sharp diffraction peak or prepeak appears to increase in intensity as temperature is increased. This phenomenon is counter intuitive as one would expect that intermediate range order fades as temperature increases. This Communication shows that a loss of hydrophobic tail organization at higher temperatures is counterbalanced by better organization of polar components giving rise to the increase in intensity of the prepeak.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4867900.html;jsessionid=1plameyrg4pms.x-aip-live-06?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4867900&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4867900
10.1063/1.4867900
SEARCH_EXPAND_ITEM