1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: An N-body solution to the problem of Fock exchange
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4868636
1.
1. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw Hill, New York, 1982).
2.
2. C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 253, 268 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00175-3
3.
3. M. Challacombe, E. Schwegler, and J. Almlöf, J. Chem. Phys. 104, 4685 (1996).
http://dx.doi.org/10.1063/1.471163
4.
4. M. Challacombe and E. Schwegler, J. Chem. Phys. 106, 5526 (1997).
http://dx.doi.org/10.1063/1.473575
5.
5. M. Challacombe, E. Schwegler, and J. Almlöff, in Computational Chemistry: Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 1996), Vol. 1, pp. 53107.
6.
6. M. Challacombe, J. Chem. Phys. 113, 10037 (2000).
http://dx.doi.org/10.1063/1.1316012
7.
7. M. Challacombe and N. Bock, “Fast multiplication of matrices with decay,” preprint arXiv:1011.3534 (2010).
8.
8. N. Bock and M. Challacombe, SIAM J. Sci. Comput. 35, C72 (2013).
http://dx.doi.org/10.1137/120870761
9.
9. T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, J. Chem. Phys. 121, 6680 (2004).
http://dx.doi.org/10.1063/1.1790931
10.
10. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
11.
11. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
12.
12. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
13.
13. L. J. Sham and M. Schlüter, Phys. Rev. B 32, 3883 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3883
14.
14. H. Xiao, J. Tahir-Kheli, and W. A. Goddard, J. Phys. Chem. Lett. 2, 212 (2011).
http://dx.doi.org/10.1021/jz101565j
15.
15. T. Bredow and A. R. Gerson, Phys. Rev. B 61, 5194 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5194
16.
16. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035403
17.
17. J. Muscat, A. Wander, and N. Harrison, Chem. Phys. Lett. 342, 397 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00616-9
18.
18. F. Wang, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 115, 8345 (2011).
http://dx.doi.org/10.1021/jp201057m
19.
19. N. Wilson, Ph.D. thesis, School of Applied Sciences, RMIT University, 2009.
20.
20. D. R. B. Brittain, C. Y. Lin, A. T. B. Gilbert, E. I. Izgorodina, P. M. W. Gill, and M. L. Coote, Phys. Chem. Chem. Phys. 11, 1138 (2009).
http://dx.doi.org/10.1039/b818412g
21.
21. M. Ramzan, S. Lebeègue, T. Kang, and R. Ahuja, J. Phys. Chem. C 115, 2600 (2011).
http://dx.doi.org/10.1021/jp110625a
22.
22. W. Ames and S. Larsen, J. Biol. Inorg. Chem. 14, 547 (2009).
http://dx.doi.org/10.1007/s00775-009-0469-9
23.
23. L. Rao, H. Ke, G. Fu, X. Xu, and Y. Yan, J. Chem. Theory Comput. 5, 86 (2009).
http://dx.doi.org/10.1021/ct800237n
24.
24. M. Marianski, A. Asensio, and J. Dannenberg, J. Chem. Phys. 137, 044109 (2012).
http://dx.doi.org/10.1063/1.4737517
25.
25. E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726 (1996).
http://dx.doi.org/10.1063/1.472135
26.
26. E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem. Phys. 106, 9708 (1997).
http://dx.doi.org/10.1063/1.473833
27.
27. E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem. Phys. 109, 8764 (1998).
http://dx.doi.org/10.1063/1.477546
28.
28. C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663 (1998).
http://dx.doi.org/10.1063/1.476741
29.
29. E. Schwegler and M. Challacombe, J. Chem. Phys. 111, 6223 (1999).
http://dx.doi.org/10.1063/1.479926
30.
30. E. Schwegler, Ph.D. thesis, University of Minnesota, 1998.
31.
31. E. Schwegler and M. Challacombe, Theor. Chem. Accounts Theory, Comput. Model. (Theor. Chim. Acta) 104, 344 (2000).
http://dx.doi.org/10.1007/s002140000127
32.
32. M. Challacombe, Comp. Phys. Commun. 128, 93 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00074-6
33.
33. S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012).
http://dx.doi.org/10.1063/1.3693908
34.
34. H. Takashima, S. Yamada, S. Obara, K. Kitamura, S. Inabata, N. Miyakawa, K. Tanabe, and U. Nagashima, J. Comput. Chem. 23, 1337 (2002).
http://dx.doi.org/10.1002/jcc.10133
35.
35. V. Weber and M. Challacombe, J. Chem. Phys. 125, 104110 (2006).
http://dx.doi.org/10.1063/1.2222359
36.
36.Fock exchange based on octree decomposition would involve overlapping matrix blocks, which would be extremely difficult to program and less efficient due to redundant tensor contractions.
37.
37. J. Almlöf, K. Faegri, and K. Korsell, J. Comput. Chem. 3, 385 (1982).
http://dx.doi.org/10.1002/jcc.540030314
38.
38. M. Häser and R. Ahlrichs, J. Comput. Chem. 10, 104 (1989).
http://dx.doi.org/10.1002/jcc.540100111
39.
39. A. Buluç and J. R. Gilbert, in ICPP'08: Proceedings of the 2008 37th International Conference on Parallel Processing (IEEE Computer Society, Washington, DC, USA, 2008), pp. 503510.
40.
40. A. Buluc and J. Gilbert, SIAM J. Sci. Comput. 34, 170 (2012).
http://dx.doi.org/10.1137/110848244
41.
41. N. Bock, M. Challacombe, C. K. Gan, G. Henkelman, K. Nemeth, A. M. N. Niklasson, A. Odell, E. Schwegler, C. J. Tymczak, and V. Weber, FreeON: A suite of programs for linear scaling quantum chemistry, branch “beta”, v.a01a4e8bd80b87501cd31404818d2445c5469e61, 2014, see http://www.freeon.org/.
42.
42. M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988).
http://dx.doi.org/10.1063/1.455553
43.
43. A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, in ICPP'09: International Conference on Parallel Processing (ACM, 2009), pp. 124131.
44.
44. L. V. Kale and S. Krishnan, in Proceedings of the Conference on Object Oriented Programming Systems, Languages and Applications (IEEE, 1993), pp. 91108.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4868636
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4868636
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4868636
2014-03-19
2014-08-21

Abstract

We report an -Body approach to computing the Fock exchange matrix with and without permutational symmetry. The method achieves an (lg) computational complexity through an embedded metric-query, allowing hierarchical application of direct SCF criteria. The advantages of permutational symmetry are found to be 4-fold for small systems, but decreasing with increasing system size and/or more permissive neglect criteria. This work sets the stage for: (1) the introduction of range queries in multi-level multipole schemes for rank reduction, and (2) recursive task parallelism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4868636.html;jsessionid=5c74hn127sno.x-aip-live-02?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4868636&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An N-body solution to the problem of Fock exchange
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4868636
10.1063/1.4868636
SEARCH_EXPAND_ITEM