1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4868642
1.
1. C. Mattos and D. Ringe, Curr. Opin. Struct. Biol. 11, 761764 (2001).
http://dx.doi.org/10.1016/S0959-440X(01)00278-0
2.
2. M. G. Ortore, P. Mariani, F. Carsughi, S. Cinelli, G. Onori, J. Teixeira, and F. Spinozzi, J. Chem. Phys. 135, 245103 (2011).
http://dx.doi.org/10.1063/1.3670419
3.
3. K. Yoshida, K. Vogtt, Z. Izaola, M. Russina, T. Yamaguchi, and M. C. Bellissent-Funel, Biochim. Biophys. Acta 1824, 502510 (2012).
http://dx.doi.org/10.1016/j.bbapap.2011.12.011
4.
4. E. Liepinsh and G. Otting, Nat. Biotechnol. 15, 264268 (1997).
http://dx.doi.org/10.1038/nbt0397-264
5.
5. P. Sashi, U. M. Yasin, and A. K. Bhuyan, Biochemistry 51, 32733283 (2012).
http://dx.doi.org/10.1021/bi201716r
6.
6. T. Fukasawawa and T. Sato, Phys. Chem. Chem. Phys. 13, 31873196 (2011).
http://dx.doi.org/10.1039/c0cp01679a
7.
7. N. A. Avdulov, S. V. Chochina, V. A. Daragan, F. Schroeder, K. H. Mayo, and W. G. Wood, Biochemistry 35, 340347 (1996).
http://dx.doi.org/10.1021/bi9513416
8.
8. A. Deshpande, S. Nimsadkar, and S. C. Mande, Acta Cryst. D 61, 10051008 (2005).
http://dx.doi.org/10.1107/S0907444905009364
9.
9. J. Juarez, A. M. Manuel, A. Cambon, A. Topete, S. Barbosa, P. Taboada, and V. Mosquera, Soft Matter 8, 36083619 (2012).
http://dx.doi.org/10.1039/c2sm06762e
10.
10. S. Marchetti, S. Cinelli, and G. Onori, Chem. Phys. Lett. 493, 158164 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.014
11.
11. V. Calandrini, G. Onori, and A. Santucci, Phys. Chem. Chem. Phys. 2, 41434146 (2000).
http://dx.doi.org/10.1039/b003746j
12.
12. S. Tanaka, Y. Oda, M. Ataka, K. Onuma, S. Fujiwara, and Y. Yonezawa, Biopolymers 59, 370379 (2001).
http://dx.doi.org/10.1002/1097-0282(20011015)59:5<370::AID-BIP1034>3.0.CO;2-Z
13.
13. K. Sasahara and K. Nitta, Proteins: Struct., Funct., Bioinf. 63, 127135 (2006).
http://dx.doi.org/10.1002/prot.20782
14.
14. W. Eberstein, Y. Georgalis, and W. Saenger, J. Cryst. Growth 143, 7178 (1994).
http://dx.doi.org/10.1016/0022-0248(94)90369-7
15.
15. I. T. S. Li and G. C. Walker, J. Am. Chem. Soc. 132, 65306540 (2010).
http://dx.doi.org/10.1021/ja101155h
16.
16. S. R. Martin, V. Esposito, P. D. L. Rios, A. Pastore, and P. A. Temussi, J. Am. Chem. Soc. 130, 99639970 (2008).
http://dx.doi.org/10.1021/ja803280e
17.
17. S. Bhattacharjya and P. Balaram, Proteins: Struct., Funct., Genet. 29, 492507 (1997).
http://dx.doi.org/10.1002/(SICI)1097-0134(199712)29:4<492::AID-PROT9>3.0.CO;2-A
18.
18. A. Giugliarelli, P. Sassi, M. Paolantoni, A. Morresi, R. Dukor, and L. Nafie, J. Phys. Chem. B 117, 26452652 (2013).
http://dx.doi.org/10.1021/jp311268x
19.
19. L. R. Nemzer, B. N. Flanders, J. D. Schmit, A. Chakrabarti, and C. M. Sorensen, Soft Matter 9, 21872196 (2013).
http://dx.doi.org/10.1039/c2sm27124a
20.
20. S. Goda, K. Takano, Y. Yamagata, R. Nagata, H. Akutsu, S. Maki, K. Namba, and K. Yutani, Prot. Sci. 9, 369375 (2000).
http://dx.doi.org/10.1110/ps.9.2.369
21.
21. S. Y. Noskov, G. Lamoureux, and B. Roux, J. Phys. Chem. B 109, 67056713 (2005).
http://dx.doi.org/10.1021/jp045438q
22.
22. D. Lousa, A. M. Baptista, and C. M. Soares, J. Chem. Inf. Model. 52, 465473 (2012).
http://dx.doi.org/10.1021/ci200455z
23.
23. S. Banerjee, R. Ghosh, and B. Bagchi, J. Phys. Chem. B 116, 37133722 (2012).
http://dx.doi.org/10.1021/jp2085439
24.
24. R. Ghosh, S. Roy, and B. Bagchi, J. Phys. Chem. B 117, 1562515638 (2013).
http://dx.doi.org/10.1021/jp406255z
25.
25. I. Juurinen, K. Nakahara, N. Ando, T. Nishiumi, H. Seta, N. Yoshida, T. Morinaga, M. Itou, T. Ninomiya, Y. Sakurai, E. Salonen, K. Nordlund, K. Hamalainen, and M. Hakala, Phys. Rev. Lett. 107, 197401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.197401
26.
26. L. Dougan, S. P. Bates, R. Hargreaves, J. P. Fox, J. Crain, J. L. Finney, V. Reat, and A. K. Soper, J. Chem. Phys. 121, 64566462 (2004).
http://dx.doi.org/10.1063/1.1789951
27.
27. A. Wakisaka and K. Matsuura, J. Mol. Liq. 129, 2532 (2006).
http://dx.doi.org/10.1016/j.molliq.2006.08.010
28.
28. G. S. Beddard, T. Doust, and J. Hudales, Nature (London) 294, 145146 (1981).
http://dx.doi.org/10.1038/294145a0
29.
29. D. C. Philllips, Proc. Natl. Acad. Sci. U.S.A. 57, 484495 (1967).
http://dx.doi.org/10.1073/pnas.57.3.483
30.
30. A. M. Melo, M. Prieto, and A. Coutinho, Biochim. Biophys. Acta 1808, 25592568 (2011).
http://dx.doi.org/10.1016/j.bbamem.2011.06.001
31.
31. H. Chen, E. Rhoades, J. S. Butler, S. N. Loh, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 104, 1045910464 (2007).
http://dx.doi.org/10.1073/pnas.0704073104
32.
32. E. Sherman, A. Itkin, Y. Y. Kuttner, E. Rhoades, D. Amir, E. Haas, and G. Haran, Biophys. J. 94, 48194827 (2008).
http://dx.doi.org/10.1529/biophysj.107.120220
33.
33. E. Sherman and G. Haran, ChemPhysChem 12, 696703 (2011).
http://dx.doi.org/10.1002/cphc.201000722
34.
34. S. Haldar, S. Mitra, and K. Chattopadhyay, J. Biol. Chem. 285, 2531425323 (2010).
http://dx.doi.org/10.1074/jbc.M110.116673
35.
35. S. Haldar and K. Chattopadhyay, J. Biol. Chem. 287, 1154611555 (2012).
http://dx.doi.org/10.1074/jbc.M111.315648
36.
36. S. SenMojumdar, R. Chowdhury, S. Chattoraj, and K. Bhattacharyya, J. Phys. Chem. B 116, 1218912198 (2012).
http://dx.doi.org/10.1021/jp307297s
37.
37. J. Choi, S. Kim, T. Tachikawa, M. Fujitsuka, and T. Majima, Phys. Chem. Chem. Phys. 13, 56515658 (2011).
http://dx.doi.org/10.1039/c0cp02689a
38.
38. K. Kawai, T. Majima, and A. Maruyama, ChemBioChem 14, 14301433 (2013).
http://dx.doi.org/10.1002/cbic.201300380
39.
39. S. B. Lioi, X. Wang, M. R. Islam, and D. S. English, Phys. Chem. Chem. Phys. 11, 93159325 (2009).
http://dx.doi.org/10.1039/b908523h
40.
40. J. Liu, L. A. Campos, M. Cerminara, X. Wang, R. Ramanathan, D. S. English, and V. Muñoz, Proc. Natl. Acad. Sci. U.S.A. 109, 179184 (2012).
http://dx.doi.org/10.1073/pnas.1111164109
41.
41. N. Pal, S. D. Verma, M. K. Singh, and S. Sen, Anal. Chem. 83, 77367744 (2011).
http://dx.doi.org/10.1021/ac2012637
42.
42. S. D. Verma, N. Pal, M. K. Singh, H. Shweta, M. F. Khan, and S. Sen, Anal. Chem. 84, 72187226 (2012).
http://dx.doi.org/10.1021/ac3015998
43.
43. A. Coutinho, L. M. S. Loura, A. Fedorov, and M. Prieto, Biophys. J. 95, 47264736 (2008).
http://dx.doi.org/10.1529/biophysj.108.134379
44.
44. D. Suckau, M. Mak, and M. Przybylski, Proc. Natl. Acad. Sci. U.S.A. 89, 56305634 (1992).
http://dx.doi.org/10.1073/pnas.89.12.5630
45.
45. G. Deléage and C. Geourjon, Comput. Appl. Biosci. 9, 197199 (1993).
http://dx.doi.org/10.1093/bioinformatics/9.2.197
46.
46. Z. Petrasek and P. Schwille, Biophys. J. 94, 14371448 (2008).
http://dx.doi.org/10.1529/biophysj.107.108811
47.
47. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, ChemPhysChem 6, 23242336 (2005).
http://dx.doi.org/10.1002/cphc.200500414
48.
48. K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, Biophys. J. 88, 14131422 (2005).
http://dx.doi.org/10.1529/biophysj.104.053199
49.
49. A. Mazouchi, A. Bahram, and C. C. Gradinaru, J. Phys. Chem. B 117, 1110011111 (2013).
http://dx.doi.org/10.1021/jp4010746
50.
50. J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 69026915 (1989).
http://dx.doi.org/10.1021/j100356a007
51.
51. J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins: Struct., Funct., Genet. 21, 167195 (1995).
http://dx.doi.org/10.1002/prot.340210302
52.
52. S. Roy, B. Jana, and B. Bagchi, J. Chem. Phys. 136, 115103 (2012).
http://dx.doi.org/10.1063/1.3694268
53.
53. S. Ghosh, S. Chattoraj, R. Chowdhury, and K. Bhattacharyya, RSC. Adv. (to be published).
http://dx.doi.org/10.1039/c4ra00719k
54.
54. H. Neuweiler, M. Lollmann, S. Doose, and M. Sauer, J. Mol. Biol. 365, 856869 (2007).
http://dx.doi.org/10.1016/j.jmb.2006.10.021
55.
55.See supplementary material at http://dx.doi.org/10.1063/1.4868642 E-JCPSA6-140-022412 for the diffusion time of lysozyme (τDlysozyme), diffusion time of R6G (τDR6G) in ethanol-water mixtures, and FCS traces of lysozyme and R6G in different χEtOH. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4868642
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4868642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4868642
2014-03-21
2015-03-04

Abstract

Effect of ethanol-water mixture on the hydrodynamic radius (r) and conformational dynamics of lysozyme has been studied by circular dichroism, emission spectra, and fluorescence correlation spectroscopy. For this purpose, the protein lysozyme is covalently labeled near the active site with a fluorescent probe, alexa 488. The ethanol molecules are sequestered near the hydrophobic tryptophan residues as indicated by the blue shift of the emission maximum of tryptophan. It is observed that both size (r) and time constant of conformational relaxation ( ) of lysozyme oscillate with increase in ethanol concentration. The r of the protein fluctuates from 19 Å in the native state, to a minimum of 13 Å, and a maximum of 29 Å. It is proposed that the oscillating behavior arises from competition between mutual interaction among protein, ethanol, and water. The fluorescence intensity fluctuates because of quenching of the fluorescence of the probe (alexa) by the free amino group of certain residues (e.g., tryptophan). Rate of inter-conversion (folding dynamics) between the open (fluorescent) and closed (non-fluorescent) form has been determined and is found to exhibit similar oscillation with variation in ethanol content.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4868642.html;jsessionid=103b8enbhpp5r.x-aip-live-03?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4868642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4868642
10.1063/1.4868642
SEARCH_EXPAND_ITEM