Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. D. Poliakoff, and R. R. Lucchese, Phys. Scri. 74, C71 (2006);
1.A. Das, E. D. Poliakoff, R. R. Lucchese, and J. D. Bozek, J. Chem. Phys. 130, 044302 (2009).
2. H. Xu, U. Jacovella, B. Ruscic, S. T. Pratt, and R. R. Lucchese, J. Chem. Phys. 136, 154303 (2012).
3. J. Adachi, K. Hosaka, S. Furuya, K. Soejima, M. Takahashi, A. Yagishita, S. K. Semenov, and N. A. Cherepkov, Phys. Rev. Lett. 91, 163001 (2003).
4. T. Jahnke, L. Foucar, J. Titze, R. Wallauer, T. Osipov, E. P. Benis, A. Alnaser, O. Jagutzki, W. Arnold, S. K. Semenov, N. A. Cherepkov, L. P. H. Schmidt, A. Czasch, A. Staudte, M. Schoffler, C. L. Cocke, M. H. Prior, H. Schmidt-Bocking, and R. Dorner, Phys. Rev. Lett. 93, 083002 (2004).
5. N. A. Cherepkov and S. K. Semenov, Int. J. Quantum Chem. 107, 2889 (2007).
6. G. Contini, N. Zema, S. Turchini, D. Catone, T. Prosperi, V. Carravetta, P. Bolognesi, L. Avaldi, and V. Feyer, J. Chem. Phys. 127, 124310 (2007).
7. I. Powis, in Advances in Chemical Physics, edited by J. Light (Wiley, New York, 2008), Vol. 138, pp. 267329.
8. G. A. Garcia, L. Nahon, S. Daly, and I. Powis, Nat. Commun. 4, 2132 (2013).
9. M. Stener, G. Fronzoni, D. Di Tommaso, and P. Decleva, J. Chem. Phys. 120, 3284 (2004).
10. S. Stranges, S. Turchini, M. Alagia, G. Alberti, G. Contini, P. Decleva, G. Fronzoni, M. Stener, N. Zema, and T. Prosperi, J. Chem. Phys. 122, 244303 (2005).
11. B. Grishanin, and V. Zadkov, J. Exp. Theor. Phys. 89, 669 (1999);
11.D. Zhdanov, and V. Zadkov, Laser Phys. 20, 107 (2010).
12. B. Ritchie, Phys. Rev. A 13, 1411 (1976).
13. I. Powis, J. Chem. Phys. 112, 301 (2000).
14. D. A. Mistrov, A. De Fanis, M. Kitajima, M. Hoshino, H. Shindo, T. Tanaka, Y. Tamenori, H. Tanaka, A. A. Pavlychev, and K. Ueda, Phys. Rev. A 68, 022508 (2003).
15. I. Powis, Phys. Rev. A 84, 013402 (2011).
16. D. Di Tommaso, M. Stener, G. Fronzoni, and P. Decleva, ChemPhysChem 7, 924 (2006).
17. C. J. Harding and I. Powis, J. Chem. Phys. 125, 234306 (2006).
18. G. A. Garcia, L. Nahon, C. J. Harding, and I. Powis, Phys. Chem. Chem. Phys. 10, 1628 (2008).

Data & Media loading...


Article metrics loading...



A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule HO. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd