1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: The influence of vibrational parity in chiral photoionization dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4869204
1.
1. E. D. Poliakoff, and R. R. Lucchese, Phys. Scri. 74, C71 (2006);
http://dx.doi.org/10.1088/0031-8949/74/5/N01
1.A. Das, E. D. Poliakoff, R. R. Lucchese, and J. D. Bozek, J. Chem. Phys. 130, 044302 (2009).
http://dx.doi.org/10.1063/1.3062806
2.
2. H. Xu, U. Jacovella, B. Ruscic, S. T. Pratt, and R. R. Lucchese, J. Chem. Phys. 136, 154303 (2012).
http://dx.doi.org/10.1063/1.3701762
3.
3. J. Adachi, K. Hosaka, S. Furuya, K. Soejima, M. Takahashi, A. Yagishita, S. K. Semenov, and N. A. Cherepkov, Phys. Rev. Lett. 91, 163001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.163001
4.
4. T. Jahnke, L. Foucar, J. Titze, R. Wallauer, T. Osipov, E. P. Benis, A. Alnaser, O. Jagutzki, W. Arnold, S. K. Semenov, N. A. Cherepkov, L. P. H. Schmidt, A. Czasch, A. Staudte, M. Schoffler, C. L. Cocke, M. H. Prior, H. Schmidt-Bocking, and R. Dorner, Phys. Rev. Lett. 93, 083002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.083002
5.
5. N. A. Cherepkov and S. K. Semenov, Int. J. Quantum Chem. 107, 2889 (2007).
http://dx.doi.org/10.1002/qua.21440
6.
6. G. Contini, N. Zema, S. Turchini, D. Catone, T. Prosperi, V. Carravetta, P. Bolognesi, L. Avaldi, and V. Feyer, J. Chem. Phys. 127, 124310 (2007).
http://dx.doi.org/10.1063/1.2779324
7.
7. I. Powis, in Advances in Chemical Physics, edited by J. Light (Wiley, New York, 2008), Vol. 138, pp. 267329.
8.
8. G. A. Garcia, L. Nahon, S. Daly, and I. Powis, Nat. Commun. 4, 2132 (2013).
http://dx.doi.org/10.1038/ncomms3132
9.
9. M. Stener, G. Fronzoni, D. Di Tommaso, and P. Decleva, J. Chem. Phys. 120, 3284 (2004).
http://dx.doi.org/10.1063/1.1640617
10.
10. S. Stranges, S. Turchini, M. Alagia, G. Alberti, G. Contini, P. Decleva, G. Fronzoni, M. Stener, N. Zema, and T. Prosperi, J. Chem. Phys. 122, 244303 (2005).
http://dx.doi.org/10.1063/1.1940632
11.
11. B. Grishanin, and V. Zadkov, J. Exp. Theor. Phys. 89, 669 (1999);
http://dx.doi.org/10.1134/1.559027
11.D. Zhdanov, and V. Zadkov, Laser Phys. 20, 107 (2010).
http://dx.doi.org/10.1134/S1054660X0917023X
12.
12. B. Ritchie, Phys. Rev. A 13, 1411 (1976).
http://dx.doi.org/10.1103/PhysRevA.13.1411
13.
13. I. Powis, J. Chem. Phys. 112, 301 (2000).
http://dx.doi.org/10.1063/1.480581
14.
14. D. A. Mistrov, A. De Fanis, M. Kitajima, M. Hoshino, H. Shindo, T. Tanaka, Y. Tamenori, H. Tanaka, A. A. Pavlychev, and K. Ueda, Phys. Rev. A 68, 022508 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.022508
15.
15. I. Powis, Phys. Rev. A 84, 013402 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.013402
16.
16. D. Di Tommaso, M. Stener, G. Fronzoni, and P. Decleva, ChemPhysChem 7, 924 (2006).
http://dx.doi.org/10.1002/cphc.200500602
17.
17. C. J. Harding and I. Powis, J. Chem. Phys. 125, 234306 (2006).
http://dx.doi.org/10.1063/1.2402175
18.
18. G. A. Garcia, L. Nahon, C. J. Harding, and I. Powis, Phys. Chem. Chem. Phys. 10, 1628 (2008).
http://dx.doi.org/10.1039/b714095a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4869204
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4869204
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4869204
2014-03-21
2014-09-21

Abstract

A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule HO. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4869204.html;jsessionid=3jf10v0lja2l.x-aip-live-03?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4869204&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: The influence of vibrational parity in chiral photoionization dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4869204
10.1063/1.4869204
SEARCH_EXPAND_ITEM