1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/11/10.1063/1.4869329
1.
1. J. M. Melillo, A. D. McGuire, D. W. Kicklighter, B. Moore, C. J. Vorosmarty, and A. L. Schloss, Nature (London) 363, 234240 (1993).
http://dx.doi.org/10.1038/363234a0
2.
2. S. R. Carpenter, J. J. Cole, M. L. Pace, R. Batt, W. A. Brock, T. Cline, J. Coloso, J. R. Hodgson, J. F. Kitchell, D. A. Seekell, L. Smith, and B. Weidel, Science 332, 10791082 (2011).
http://dx.doi.org/10.1126/science.1203672
3.
3. D. M. Ware and R. E. Thompson, Science 308, 12801284 (2005).
http://dx.doi.org/10.1126/science.1109049
4.
4. R. Emerson and W. Arnold, J. Gen. Physiol. 16, 191205 (1932).
http://dx.doi.org/10.1085/jgp.16.2.191
5.
5. L. N. M. Duysens, Photosynth. Res. 21, 6179 (1989).
6.
6. L. N. M. Duysens, W. Huiskamp, J. Vos, and J. van der Hart, Biochim. Biophys. Acta 19, 188190 (1956).
http://dx.doi.org/10.1016/0006-3002(56)90412-7
7.
7. R. van Grondelle and H. van Gorkom, “The birth of the photosynthetic reaction center: The story of Lou Duysens,” Photosynth. Res. (in press).
http://dx.doi.org/10.1007/s11120-013-9959-2
8.
8. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell, Oxford, 2002).
9.
9. B. R. Green and W. W. Parson, Light-Harvesting Antennas in Photosynthesis (Kluwer, Dordrecht, 2003).
10.
10. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763774 (2011).
http://dx.doi.org/10.1038/nchem.1145
11.
11. L. O. Björn and Govindjee, Curr. Sci. 96, 14661474 (2009).
12.
12. D. Shevela, L. O. Björn, and Govindjee, Natural and Artificial Photosynthesis: Pathways to Clean, Renewable Energy, edited by R. Razeghifard (John Wiley and Sons, Hoboken, NJ, 2013).
13.
13. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. R. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, Science 332, 805809 (2011).
http://dx.doi.org/10.1126/science.1200165
14.
14. G. D. Scholes, T. Mirkovic, D. B. Turner, F. Fassioli, and A. Buchleitner, Energy Environ. Sci. 5, 93749393 (2012).
http://dx.doi.org/10.1039/c2ee23013e
15.
15. R. C. Zimmerman and J. N. Kremer, Mar. Ecol.: Prog. Ser. 27, 277285 (1986).
http://dx.doi.org/10.3354/meps027277
16.
16. R. D. Roberts, M. Kühl, R. N. Glud, and S. Rysgaard, J. Phycol. 38, 273283 (2002).
http://dx.doi.org/10.1046/j.1529-8817.2002.01104.x
17.
17. R. A. Herbert, A. Gall, T. Maoka, R. J. Cogdell, B. Robert, S. Takaichi, and S. Schwabe, Photosynth. Res. 95, 261268 (2008).
http://dx.doi.org/10.1007/s11120-007-9246-1
18.
18. R. van Grondelle and V. I. Novoderezhkin, Phys. Chem. Chem. Phys. 8 (7), 793807 (2006).
http://dx.doi.org/10.1039/b514032c
19.
19. V. Novoderezhkin and R. van Grondelle, Phys. Chem. Chem. Phys. 12, 73527365 (2010).
http://dx.doi.org/10.1039/c003025b
20.
20. Y. C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241262 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
21.
21. A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming, Phys. Chem. Chem. Phys. 12, 73197337 (2010).
http://dx.doi.org/10.1039/c003389h
22.
22. G. R. Fleming, G. S. Schlau-Cohen, K. Amarnath, and J. Zaks, Faraday Discuss. 155, 2741 (2012).
http://dx.doi.org/10.1039/c1fd00078k
23.
23. G. D. Scholes and G. R. Fleming, Adv. Chem. Phys. 132, 57129 (2005).
http://dx.doi.org/10.1002/0471759309.ch2
24.
24. T. Renger, Photosynth. Res. 102, 471485 (2009).
http://dx.doi.org/10.1007/s11120-009-9472-9
25.
25. T. Renger and E. Schodder, ChemPhysChem 11, 11411153 (2010).
http://dx.doi.org/10.1002/cphc.200900932
26.
26. G. D. Scholes, Annu. Rev. Phys. Chem. 54, 5787 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
27.
27. G. D. Scholes, J. Phys. Chem. Lett. 1, 28 (2010).
http://dx.doi.org/10.1021/jz900062f
28.
28. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234110 (2009).
http://dx.doi.org/10.1063/1.3155214
29.
29. P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys. Chem. B 113, 99429947 (2009).
http://dx.doi.org/10.1021/jp901724d
30.
30. S. Shim, P. Rebentrost, S. Valleau, and A. Aspuru-Guzik, Biophys. J. 102, 649660 (2012).
http://dx.doi.org/10.1016/j.bpj.2011.12.021
31.
31. Z. Bay and R. M. Pearlstein, Proc. Natl. Acad. Sci. U.S.A. 50 (962967) (1963).
http://dx.doi.org/10.1073/pnas.50.5.962
32.
32. R. M. Pearlstein, Photosynth. Res. 73, 119126 (2002).
http://dx.doi.org/10.1023/A:1020401820196
33.
33. V. M. Kenkre and R. S. Knox, J. Lumin. 12/13, 187193 (1976).
http://dx.doi.org/10.1016/0022-2313(76)90078-8
34.
34. L. Nedbal and V. Szöcs, J. Theor. Biol. 120, 411418 (1986).
http://dx.doi.org/10.1016/S0022-5193(86)80035-2
35.
35. H. Sumi, Chem. Rec. 1, 480493 (2001).
http://dx.doi.org/10.1002/tcr.10004
36.
36. M. Chachisvilis, O. Kühn, T. Pullerits, and V. Sundström, J. Phys. Chem. B 101, 72757283 (1997).
http://dx.doi.org/10.1021/jp963360a
37.
37. D. Beljonne, C. Curutchet, G. D. Scholes, and R. Silbey, J. Phys. Chem. B 113, 65836599 (2009).
http://dx.doi.org/10.1021/jp900708f
38.
38. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782786 (2007).
http://dx.doi.org/10.1038/nature05678
39.
39. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
http://dx.doi.org/10.1063/1.3155372
40.
40. P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
http://dx.doi.org/10.1088/1367-2630/11/3/033003
41.
41. F. Fassioli and A. Olaya-Castro, New J. Phys. 12, 085006 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085006
42.
42. D. Mauzerall and N. L. Greenbaum, Biochim. Biophys. Acta 974, 119140 (1989).
http://dx.doi.org/10.1016/S0005-2728(89)80365-2
43.
43. R. Croce and H. van Amerongen, J. Photochem. Photobiol., B 104, 142153 (2011).
http://dx.doi.org/10.1016/j.jphotobiol.2011.02.015
44.
44. S. Scheuring and J. N. Sturgis, Photosynth. Res. 102, 197211 (2009).
http://dx.doi.org/10.1007/s11120-009-9413-7
45.
45. S. Scheuring, J.-L. Rigaud, and J. N. Sturgis, EMBO J. 23, 41274133 (2004).
http://dx.doi.org/10.1038/sj.emboj.7600429
46.
46. S. Bahatyrova, R. N. Frese, C. A. Siebert, J. D. Olsen, K. O. van der Werf, R. van Grondelle, R. A. Niederman, P. A. Bullough, C. Otto, and C. N. Hunter, Nature (London) 430, 10581062 (2004).
http://dx.doi.org/10.1038/nature02823
47.
47. H.-W. Trissl, C. J. Law, and R. J. Cogdell, Biochim. Biophys. Acta 1412, 149172 (1999).
http://dx.doi.org/10.1016/S0005-2728(99)00056-0
48.
48. M. Vos, R. van Grondelle, F. W. van der Kooij, D. van de Poll, J. Amesz, and L. N. M. Duysens, Biochim. Biophys. Acta 850, 501512 (1986).
http://dx.doi.org/10.1016/0005-2728(86)90119-2
49.
49. J. G. C. Bakker, R. van Grondelle, and W. T. F. Den Hollander, Biochim. Biophys. Acta 725, 508518 (1983).
http://dx.doi.org/10.1016/0005-2728(83)90191-3
50.
50. B. Pierson, A. Oesterle, and G. L. Murphy, FEMS Mirciobiol. Ecol. 45, 365376 (1987).
http://dx.doi.org/10.1111/j.1574-6968.1987.tb02412.x
51.
51. B. K. Pierson, V. M. Sands, and J. L. Frederick, Appl. Environ. Microbiol. 56, 23272340 (1990).
52.
52. D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, Microbiol. Mol. Biol. Rev. 62, 13531370 (1998).
53.
53. C. Gameiro, J. Zwolinski, and V. Brotas, Hydrobiologia 669, 249263 (2011).
http://dx.doi.org/10.1007/s10750-011-0695-3
54.
54. D. Krause-Jensen and K. Sand-Jensen, Limnol. Oceanogr. 43, 96407 (1998).
http://dx.doi.org/10.4319/lo.1998.43.3.0396
55.
55. J. Overmann, H. Cypionka, and N. Pfennig, Limnol. Oceanogr. 37, 150155 (1992).
http://dx.doi.org/10.4319/lo.1992.37.1.0150
56.
56. R. Kouřil, E. Wientjes, J. B. Bultema, R. Croce, and E. J. Boekema, Biochim. Biophys. Acta 1827, 411419 (2013).
http://dx.doi.org/10.1016/j.bbabio.2012.12.003
57.
57. R. van Grondelle, J. P. Dekker, T. Gillbro, and V. Sundström, Biochim. Biophys. Acta 1187, 165 (1994).
http://dx.doi.org/10.1016/0005-2728(94)90166-X
58.
58. M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113019
59.
59. S. Lloyd, M. Mohseni, A. Shabani, and H. Rabitz, “The quantum Goldilocks effect: on the convergence of timescales in quantum transport,” preprint arXiv:1111.4982 (2011).
60.
60. E. Agliari, A. Blumen, and O. Mülken, J. Phys. A: Math. Gen. 41, 445301445321 (2008).
http://dx.doi.org/10.1088/1751-8113/41/44/445301
61.
61. A. Olaya-Castro and G. D. Scholes, Int. Rev. Phys. Chem. 30, 4977 (2011).
http://dx.doi.org/10.1080/0144235X.2010.537060
62.
62. J. M. Anna, G. D. Scholes, and R. van Grondelle, Bioscience 64, 1425 (2014).
http://dx.doi.org/10.1093/biosci/bit002
63.
63. B. P. Krueger, G. D. Scholes, and G. R. Fleming, J. Phys. Chem. B 102, 53785386 (1998).
http://dx.doi.org/10.1021/jp9811171
64.
64. F. C. Spano, Acc. Chem. Res. 43, 429439 (2010).
http://dx.doi.org/10.1021/ar900233v
65.
65. S. Tretiak, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. 77, 46564659 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4656
66.
66. F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Adv. Mater. 20, 46414678 (2008).
http://dx.doi.org/10.1002/adma.200800402
67.
67. R. Monshouwer, M. Abrahamsson, F. van Mourik, and R. van Grondelle, J. Phys. Chem. B 101, 72417248 (1997).
http://dx.doi.org/10.1021/jp963377t
68.
68. V. F. Kamalov, I. A. Struganova, and K. Yoshihara, J. Phys. Chem. 100, 86408644 (1996).
http://dx.doi.org/10.1021/jp9522472
69.
69. G. D. Scholes, G. O. Turner, K. P. Ghiggino, M. N. Paddon-Row, W. Schuddeboom, J. J. Piet, and J. W. Warman, Chem. Phys. Lett. 292, 601606 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00692-7
70.
70. T. R. Calhoun and G. R. Fleming, Phys. Stat. Sol. B 248, 833838 (2011).
http://dx.doi.org/10.1002/pssb.201000856
71.
71. T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, and G. R. Fleming, J. Phys. Chem. B 113, 1629116295 (2009).
http://dx.doi.org/10.1021/jp908300c
72.
72. M. H. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, J. Phys. Chem. B 109, 1054210556 (2005).
http://dx.doi.org/10.1021/jp050788d
73.
73. N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, Acc. Chem. Res. 42, 13521363 (2009).
http://dx.doi.org/10.1021/ar9001075
74.
74. G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nat. Chem. 4, 389 (2012).
http://dx.doi.org/10.1038/nchem.1303
75.
75. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature (London) 463, 644648 (2010).
http://dx.doi.org/10.1038/nature08811
76.
76. F. Fassioli, R. Dinshaw, P. C. Arpin, and G. D. Scholes, J. R. Soc., Interface 11, 20130901 (2014).
http://dx.doi.org/10.1098/rsif.2013.0901
77.
77. D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, Phys. Chem. Chem. Phys. 14, 48574874 (2012).
http://dx.doi.org/10.1039/c2cp23670b
78.
78. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, J. Phys. Chem. Lett. 2, 19041911 (2011).
http://dx.doi.org/10.1021/jz200811p
79.
79. C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, Nat. Chem. 4, 396404 (2012).
http://dx.doi.org/10.1038/nchem.1302
80.
80. J. R. Caram and G. S. Engel, Faraday Discus. 153, 93104 (2011).
http://dx.doi.org/10.1039/c1fd00049g
81.
81. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Z. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. U.S.A. 107(29), 1276612770 (2010).
http://dx.doi.org/10.1073/pnas.1005484107
82.
82. D. Hayes and G. S. Engel, Biophys. J. 100, 20432052 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.12.3747
83.
83. A. Brańczyk, D. B. Turner, and G. D. Scholes, Ann. Phys. 526, 3149 (2014).
http://dx.doi.org/10.1002/andp.201300153
84.
84. L. D. Bakalis and J. Knoester, J. Lumin. 83–4, 115119 (1999).
http://dx.doi.org/10.1016/S0022-2313(99)00083-6
85.
85. V. Novoderezhkin, R. Monshouwer, and R. van Grondelle, J. Phys. Chem. B 103, 1054010548 (1999).
http://dx.doi.org/10.1021/jp9844415
86.
86. D. Abramavicius, B. Palmieri, D. V. Voronine, F. Sanda, and S. Mukamel, Chem. Rev. 109, 23502408 (2009).
http://dx.doi.org/10.1021/cr800268n
87.
87. J. M. Dawlaty, D. I. G. Bennett, V. M. Huxter, and G. R. Fleming, J. Chem. Phys. 135, 044201 (2011).
http://dx.doi.org/10.1063/1.3607236
88.
88. F. Fassioli, A. Olaya-Castro, and G. D. Scholes, J. Phys. Chem. Lett. 3, 31363142 (2012).
http://dx.doi.org/10.1021/jz3010317
89.
89. D. Yarkony and R. Silbey, J. Chem. Phys. 65(3), 10421052 (1976).
http://dx.doi.org/10.1063/1.433182
90.
90. D. R. Yarkony and R. Silbey, J. Chem. Phys. 67(12), 58185827 (1977).
http://dx.doi.org/10.1063/1.434789
91.
91. J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. U.S.A. 108, 1761517620 (2011).
http://dx.doi.org/10.1073/pnas.1110642108
92.
92. S. Hoyer and K. B. Whaley, J. Chem. Phys. 138, 164102 (2013).
http://dx.doi.org/10.1063/1.4800800
93.
93. A. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. Steinberg, and D. F. V. James, New J. Phys. 14, 085003 (2012).
http://dx.doi.org/10.1088/1367-2630/14/8/085003
94.
94. G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, Nature (London) 374, 517521 (1995).
http://dx.doi.org/10.1038/374517a0
95.
95. D. Thouless, Phys. Rep. 13, 93 (1974).
http://dx.doi.org/10.1016/0370-1573(74)90029-5
96.
96. R. Jimenez, S. N. Dikshit, S. E. Bradforth, and G. R. Fleming, J. Phys. Chem. 100, 68256834 (1996).
http://dx.doi.org/10.1021/jp953074j
97.
97. T. Meier, V. Chernyak, and S. Mukamel, J. Phys. Chem. B 101, 73327342 (1997).
http://dx.doi.org/10.1021/jp970045v
98.
98. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 95, 78807890 (1991).
http://dx.doi.org/10.1063/1.461317
99.
99. K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524538 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000524
100.
100. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.052306
101.
101. G. Vidal and R. Werner, Phys. Rev. A 65, 032314 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.032314
102.
102. V. Vedral, M. B. Plenio, M. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2275
103.
103. A. Ishizaki and G. R. Fleming, New J. Phys. 12, 055004 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/055004
104.
104. M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nat. Phys. 6, 462 (2010).
http://dx.doi.org/10.1038/nphys1652
105.
105. C. Smyth, F. Fassioli, and G. D. Scholes, Philos. Trans. R. Soc., A 370, 3728 (2012).
http://dx.doi.org/10.1098/rsta.2011.0420
106.
106. S. M. Lee and H.-W. Lee, Int. J. Theor. Phys. 50, 3230 (2011).
http://dx.doi.org/10.1007/s10773-011-0826-7
107.
107. T. Scholak, F. de Melo, T. Wellens, F. Mintert, and A. Buchleitner, Phys. Rev. E 83, 021912 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.021912
108.
108. F. Levi and F. Mintert, Phys. Rev. Lett. 110, 150402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.150402
109.
109. C. Smyth and G. D. Scholes, “Delocalization and entanglement: A method of developing analytical multipartite measures for mixed W-like states,” preprint arXiv:1401.7412 [quant-ph] (2014).
110.
110. G. Heimel, M. Daghofer, J. Gierschner, E. List, A. Grimsdale, K. Müllen, D. Beljonne, J. L. Brédas, and E. Zojer, J. Chem. Phys. 122, 054501 (2005).
http://dx.doi.org/10.1063/1.1839574
111.
111. I. B. Berlman, Energy Transfer Parameters of Aromatic Compounds (Academic Press, New York, 1973).
112.
112. A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M. B. Plenio, Nat. Phys. 9, 113118 (2013).
http://dx.doi.org/10.1038/nphys2515
113.
113. A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal, Sci. Rep. 3, 2029 (2013).
http://dx.doi.org/10.1038/srep02029
114.
114. V. Butkus, D. Zigmantas, D. Abramavicius, and L. Valkunas, Chem. Phys. Lett. 587, 9398 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.09.043
115.
115. M. Ferretti, V. Novoderezhkin, E. Romero, R. Augulis, A. Pandit, D. Zigmatas, and R. van Grondelle, “The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy,” Phys. Chem. Chem. Phys. (in press).
http://dx.doi.org/10.1039/c3cp54634a
116.
116. C. Jumper, J. Anna, A. Stradomska, J. Schins, M. Myahkostupov, V. Prusakova, D. Oblinsky, F. N. Castellano, J. Knoester, and G. D. Scholes, “Intramolecular radiationless transitions dominate exciton relaxation dynamics,” Chem. Phys. Lett. (in press).
http://dx.doi.org/10.1016/j.cplett.2014.03.007
117.
117. E. J. O’Reilly and A. Olaya-Castro, Nat. Commun. 5, 3012 (2014).
http://dx.doi.org/10.1038/ncomms4012
118.
118. C. G. Heid, P. Ottiger, R. Leist, and S. Leutwyler, J. Chem. Phys. 135, 154311 (2011).
http://dx.doi.org/10.1063/1.3652759
119.
119. P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 136, 174308 (2012).
http://dx.doi.org/10.1063/1.4705119
120.
120. P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 131, 204308 (2009).
http://dx.doi.org/10.1063/1.3266937
121.
121. E. Heller, Acc. Chem. Res. 14, 368375 (1981).
http://dx.doi.org/10.1021/ar00072a002
122.
122. S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, J. Phys. Chem. B 118, 12961308 (2014).
http://dx.doi.org/10.1021/jp411924c
123.
123. W. T. Pollard, S. L. Dexheimer, Q. Wang, L. A. Peteanu, C. V. Shank, and R. A. Mathies, J. Phys. Chem. 96, 61476158 (1992).
http://dx.doi.org/10.1021/j100194a013
124.
124. C. J. Bardeen, Q. Wang, and C. V. Shank, Phys. Rev. Lett. 75, 34103413 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3410
125.
125. M. H. Vos, F. Rappaport, J.-C. Lambry, J. Breton, and J.-L. Martin, Nature (London) 363, 320325 (1993).
http://dx.doi.org/10.1038/363320a0
126.
126. J. Womick, B. West, N. Scherer, and A. M. Moran, J. Phys. B: At. Mol. Opt. Phys. 45, 154016 (2012).
http://dx.doi.org/10.1088/0953-4075/45/15/154016
127.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4869329
Loading
/content/aip/journal/jcp/140/11/10.1063/1.4869329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/11/10.1063/1.4869329
2014-03-20
2014-09-20

Abstract

Photosynthetic units perform energy transfer remarkably well under a diverse range of demanding conditions. However, the mechanism of energy transfer, from excitation to conversion, is still not fully understood. Of particular interest is the possible role that coherence plays in this process. In this perspective, we overview photosynthetic light harvesting and discuss consequences of excitons for energy transfer and how delocalization can be assessed. We focus on challenges such as decoherence and nuclear-coordinate dependent delocalization. These approaches complement conventional spectroscopy and delocalization measurement techniques. New broadband transient absorption data may help uncover the difference between electronic and vibrational coherences present in two-dimensional electronic spectroscopy data. We describe how multipartite entanglement from quantum information theory allows us to formulate measures that elucidate the delocalization length of excitation and the details of that delocalization even from highly averaged information such as the density matrix.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/11/1.4869329.html;jsessionid=zbjv1ysz702h.x-aip-live-03?itemId=/content/aip/journal/jcp/140/11/10.1063/1.4869329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/11/10.1063/1.4869329
10.1063/1.4869329
SEARCH_EXPAND_ITEM