Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4867786
1.
1. S. W. Benson, Foundations of Chemical Kinetics (McGraw-Hill, New York, 1960).
2.
2. M. Thattai and A. van Oudenaarden, Proc. Natl. Acad. Sci. U.S.A. 98, 8614 (2001);
http://dx.doi.org/10.1073/pnas.151588598
2.J. M. Raser and E. K. O’Shea, Science 309, 2010 (2005);
http://dx.doi.org/10.1126/science.1105891
2.E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden, Nat. Genet. 31, 69 (2002).
http://dx.doi.org/10.1038/ng869
3.
3. A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94, 218102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.218102
4.
4. T. Butler and N. Goldenfeld, Phys. Rev. E. 80, 030902 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.030902
5.
5. T. Biancalani, D. Fanelli, and F. Di Patti, Phys. Rev. E 81, 046215 (2010);
http://dx.doi.org/10.1103/PhysRevE.81.046215
5.T. Biancalani, T. Galla, and A. J. McKane, Phys. Rev. E 84, 026201 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.026201
6.
6. M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Belknap (Harvard University) Press, Cambridge, MA, 2006).
7.
7. A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, Physica 7, 344 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90102-1
8.
8. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam/New York, 1981).
9.
9. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009).
10.
10. H. A. Kramers, Physica 7, 284 (1940);
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
10.J. E. Moyal, J. R. Stat. Soc. (London) B 11, 150 (1949).
11.
11. R. Grima, P. Thomas, and A. V. Straube, J. Chem. Phys. 135, 084103 (2011).
http://dx.doi.org/10.1063/1.3625958
12.
12. H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, and R. Kageyama, Science 298, 840 (2002).
http://dx.doi.org/10.1126/science.1074560
13.
13. Y. Takashima, T. Ohtsuka, A. González, H. Miyachia, and R. Kageyama, Proc. Natl. Acad. Sci. U.S.A. 108, 3300 (2011).
http://dx.doi.org/10.1073/pnas.1014418108
14.
14. Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics (Academic Press, San Diago, CA, 1993).
15.
15. N. A. M. Monk, Curr. Biol. 13, 1409 (2003);
http://dx.doi.org/10.1016/S0960-9822(03)00494-9
15.M. H. Jensen, K. Sneppen, and G. Tiana, FEBS Lett. 541, 176 (2003);
http://dx.doi.org/10.1016/S0014-5793(03)00279-5
15.J. Lewis, Curr. Biol. 13, 1398 (2003).
http://dx.doi.org/10.1016/S0960-9822(03)00534-7
16.
16. M. R. Roussel, J. Phys. Chem. 100, 8323 (1996).
http://dx.doi.org/10.1021/jp9600672
17.
17. R. Hinch and S. Schnell, J. Math. Chem. 35, 253 (2004).
http://dx.doi.org/10.1023/B:JOMC.0000033258.42803.60
18.
18. D. Bratsun, D. Volfson, L. S. Tsimring, and J. Hasty, Proc. Natl. Acad. Sci. U.S.A. 102, 14593 (2005)
http://dx.doi.org/10.1073/pnas.0503858102
19.
19. M. Barrio, K. Burrage, A. Leier, and T. Tian, PLoS Comput. Biol. 2, e117 (2006).
http://dx.doi.org/10.1371/journal.pcbi.0020117
20.
20. T. Galla, Phys. Rev. E 80, 021909 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021909
21.
21. L. F. Lafuerza and R. Toral, Phys. Rev. E 84, 021128 (2011);
http://dx.doi.org/10.1103/PhysRevE.84.021128
21.L. F. Lafuerza and R. Toral, Phys. Rev. E 84, 051121 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.051121
22.
22. T. Brett and T. Galla, Phys. Rev. Lett. 110, 250601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.250601
23.
23. A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2010).
24.
24. P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973);
http://dx.doi.org/10.1103/PhysRevA.8.423
24.C. De Dominicis, J. Phys. C (Paris) 37, 247 (1976);
24.H. K. Janssen, Z. Phys. B 23, 377 (1976).
http://dx.doi.org/10.1007/BF01316547
25.
25. D. T. Gillespie, J. Chem. Phys. 113, 297 (2000).
http://dx.doi.org/10.1063/1.481811
26.
26. R. Graham, Z. Phys. B 26, 397 (1977).
http://dx.doi.org/10.1007/BF01570750
27.
27.In Eq. (5) of our earlier paper,22 we reported a similar expression before the LNA was made, i.e., with x instead of x as an argument of Bαβ. The precise interpretation of the average ⟨…⟩ in that equation is ambiguous, which is why we use a compact noise correlator Bαβ only when the LNA is made in the present paper. The appropriate interpretation of the notation in our earlier paper is given by Eqs. (16)–(18) of the present paper.
28.
28. R. P. Boland, T. Galla, and A. J. McKane, J. Stat. Mech. Theor. Exp. 2008, P09001;
http://dx.doi.org/10.1088/1742-5468/2008/09/P09001
28.R. P. Boland, T. Galla, and A. J. McKane, Phys. Rev. E 79, 051131 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.051131
29.
29. G. W. A. Constable, A. J. McKane, and T. Rogers, J. Phys. A: Math. Theor. 46, 295002 (2013).
http://dx.doi.org/10.1088/1751-8113/46/29/295002
30.
30. J. D. Challenger, D. Fanelli, and A. J. McKane, Phys. Rev. E 88, 040102R (2013); “The theory of individual based discrete-time processes,” preprint arXiv:1311.5209 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.040102
31.
31. I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968);
http://dx.doi.org/10.1063/1.1668896
31.P. Glansdorf and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, Chichester, 1971).
32.
32. R. Lefever and G. Nicolis, J. Theor. Biol. 30, 267 (1971).
http://dx.doi.org/10.1016/0022-5193(71)90054-3
33.
33. K. J. Brown and F. A. Davidson, Nonlinear Anal. 24, 1713 (1995).
http://dx.doi.org/10.1016/0362-546X(94)00218-7
34.
34. P. Gray, S. K. Scott, and J. H. Merkin, J. Chem. Soc. Faraday Trans. 1 84, 993 (1988).
http://dx.doi.org/10.1039/f19888400993
35.
35. C. M. Giver and B. Chakraborty, “Effects of intrinsic fluctuations in a prototypical chemical oscillator: metastability and switching,” preprint arXiv:1303.3048 (2013).
36.
36. T. E. Woolley, R. E. Baker, E. A. Gaffnety, P. K. Maini, and S. Seirin-Lee, Phys. Rev. E. 85, 051914 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.051914
37.
37. W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Advances in Design and Control Vol. 12 (SIAM, Philadelphia, 2007).
38.
38.The convention for the Fourier transform is used throughout.
39.
39. D. F. Anderson, J. Chem. Phys. 127, 214107 (2007).
http://dx.doi.org/10.1063/1.2799998
40.
40. A. Huppert, B. Blasius, and L. Stone, Am. Nat. 159, 156 (2002).
http://dx.doi.org/10.1086/324789
41.
41. R. FitzHugh, Bull. Math. Biophys. 17, 257 (1955);
http://dx.doi.org/10.1007/BF02477753
41.J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061 (1962).
http://dx.doi.org/10.1109/JRPROC.1962.288235
42.
42. P. Hanggi, J. Stat. Phys. 42, 105 (1986);
http://dx.doi.org/10.1007/BF01010843
42.M. Mobilia, J. Theor. Biol. 264, 1 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.01.008
43.
43. P. Thomas, A. V. Straube, J. Timmer, C. Fleck, and R. Grima, J. Theor. Biol. 335, 222 (2013).
http://dx.doi.org/10.1016/j.jtbi.2013.06.021
44.
44. T. Brett and T. Galla (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4867786
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4867786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4867786
2014-03-31
2016-12-07

Abstract

We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4867786.html;jsessionid=-NCrbYQP8o3Gukg4j51qU6ME.x-aip-live-03?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4867786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/12/10.1063/1.4867786&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4867786'
Right1,Right2,Right3,