Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4867996
1.
1. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rd ed. (Oxford University Press, New York, 1997).
2.
2. J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929).
3.
3. H. A. Jahn and E. Teller, Proc. R. Soc. A 161, 220 (1937).
http://dx.doi.org/10.1098/rspa.1937.0142
4.
4. D. G. Truhlar and C. A. Mead, Phys. Rev. A 68, 032501 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.032501
5.
5. E. Teller, Isr. J. Chem. 7, 227 (1969).
http://dx.doi.org/10.1002/ijch.196900034
6.
6. J. Michl, Mol. Photochem. 4, 243 (1972).
7.
7. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH Publishers, New York, 1995).
8.
8. F. Bernardi, M. Olivucci, and M. A. Robb, Chem. Soc. Rev. 25, 321 (1996).
http://dx.doi.org/10.1039/cs9962500321
9.
9. D. R. Yarkony, J. Phys. Chem. A 105, 6277 (2001).
http://dx.doi.org/10.1021/jp003731u
10.
10. Conical Intersections: Theory, Computation, and Experiment, edited by W. Domcke, D. R. Yarkony, and H. Koppel (World Scientific, Singapore, 2011).
11.
11. J. D. Coe and T. J. Martinez, J. Am. Chem. Soc. 127, 4560 (2005).
http://dx.doi.org/10.1021/ja043093j
12.
12. B. G. Levine and T. J. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
13.
13. S. Matsika and P. Krause, Annu. Rev. Phys. Chem. 62, 621 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103450
14.
14. L. De Vico, C. S. Page, M. Garavelli, F. Bernardi, R. Basosi, and M. Olivucci, J. Am. Chem. Soc. 124, 4124 (2002).
http://dx.doi.org/10.1021/ja017502c
15.
15. N. A. Anderson and T. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094347
16.
16. G. A. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
17.
17. I. B. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006).
18.
18. J. T. Hougen, J. Mol. Spectrosc. 13, 149 (1964).
http://dx.doi.org/10.1016/0022-2852(64)90064-5
19.
19. G. H. Herzberg, Electronic Spectra of Polyatomic Molecules (Krieger, Malabar, FL, 1991).
20.
20. B. Hoffman and M. A. Ratner, Mol. Phys. 35, 901 (1978).
http://dx.doi.org/10.1080/00268977800100671
21.
21. L. J. Butler, Annu. Rev. Phys. Chem. 49, 125 (1998);
http://dx.doi.org/10.1146/annurev.physchem.49.1.125
21.B. E. Applegate, T. A. Barckholtz, and T. A. Miller, Chem. Soc. Rev. 32, 38 (2003).
http://dx.doi.org/10.1039/a910269h
22.
22. A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, Chem. Phys. Lett. 299, 296 (1999);
http://dx.doi.org/10.1016/S0009-2614(98)01288-3
22.S. Sorgues, J. M. Mestdagh, J. P. Visticot, and B. Soep, Phys. Rev. Lett. 91, 103001 (2003);
http://dx.doi.org/10.1103/PhysRevLett.91.103001
22.S. A. Trushin, T. Yatsuhashi, W. Fuss, and W. E. Schmid, Chem. Phys. Lett. 376, 282 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00979-5
23.
23. V. Blanchet, M. Zgierski, T. Seideman, and A. Stolow, Nature (London) 401, 52 (1999);
http://dx.doi.org/10.1038/43410
23.A. Stolow, Annu. Rev. Phys. Chem. 54, 89 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103809
24.
24. K. Wynne and R. M. Hochstrasser, Chem. Phys. 171, 179 (1993);
http://dx.doi.org/10.1016/0301-0104(93)85142-U
24.K. Wynne and R. M. Hochstrasser, Chem. Phys. 173, 539 (1993);
http://dx.doi.org/10.1016/0301-0104(93)80167-8
24.K. Wynne and R. M. Hochstrasser, J. Raman Spec. 26, 561 (1995).
http://dx.doi.org/10.1002/jrs.1250260711
25.
25. A. Albrecht Ferro and D. M. Jonas, J. Chem. Phys. 115, 6281 (2001).
http://dx.doi.org/10.1063/1.1409352
26.
26. W. Qian and D. M. Jonas, J. Chem. Phys. 119, 1611 (2003).
http://dx.doi.org/10.1063/1.1581854
27.
27. D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 128, 144510 (2008).
http://dx.doi.org/10.1063/1.2837471
28.
28. D. A. Farrow, E. R. Smith, W. Qian, and D. M. Jonas, J. Chem. Phys. 129, 174509 (2008).
http://dx.doi.org/10.1063/1.2982160
29.
29. B. A. West, B. P. Molesky, N. P. Montoni, and A. M. Moran, New J. Phys. 15, 025007 (2013).
http://dx.doi.org/10.1088/1367-2630/15/2/025007
30.
30. J. Yang, L. Zhang, L. Wang, and D. Zhong, J. Am. Chem. Soc. 134, 16460 (2012).
http://dx.doi.org/10.1021/ja305283j
31.
31. F. Messina, M. Prémont-Schwarz, O. Braem, D. Xiao, V. S. Batista, E. T. J. Nibbering, and M. Chergui, Angew. Chem., Int. Ed. 52, 6871 (2013).
http://dx.doi.org/10.1002/anie.201301931
32.
32. J. M. Womick, B. A. West, N. F. Scherer, and A. M. Moran, J. Phys. B: At. Mol. Opt. Phys. 45, 154016 (2012).
http://dx.doi.org/10.1088/0953-4075/45/15/154016
33.
33. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, Nat. Phys. 7, 612 (2011);
http://dx.doi.org/10.1038/nphys1980
33.O. Schalk, A. E. Boguslavskiy, M. S. Schuurman, R. Y. Brogaard, A. N. Unterreiner, A. Wrona-Piotrowicz, N. H. Werstiuk, and A. Stolow, J. Phys. Chem. A 117, 10239 (2013).
http://dx.doi.org/10.1021/jp309875m
34.
34. O. Schalk and P. Hockett, Chem. Phys. Lett. 517, 237 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.10.046
35.
35. W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley, Coord. Chem. Rev. 248, 1363 (2004).
http://dx.doi.org/10.1016/j.ccr.2004.01.007
36.
36. J. W. Perry, K. Mansour, and I. Y. S. Lee, Science 273, 1533 (1996);
http://dx.doi.org/10.1126/science.273.5281.1533
36.H. Imahori, T. Umeyama, and S. Ito, Acc. Chem. Res. 42, 1809 (2009).
http://dx.doi.org/10.1021/ar900034t
37.
37. M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961);
http://dx.doi.org/10.1016/0022-2852(61)90236-3
37.M. Gouterman, in The Porphyrins, edited by D. Dolphin (Academic Press, New York, 1978), Vol. 3, p. 1.
38.
38. C. Weiss, H. Kobayashi, and M. Gouterman, J. Mol. Spectrosc. 16, 415 (1965).
http://dx.doi.org/10.1016/0022-2852(65)90132-3
39.
39. Phthalocyanines: Properties and Applications, edited by C. C. Leznoff and A. B. P. Lever (VCH Publishers, Inc., New York, 1996), Vol. 4.
40.
40. E. J. Baerends, G. Ricciardi, A. Rosa, and S. J. A. van Gisbergen, Coord. Chem. Rev. 230, 5 (2002).
http://dx.doi.org/10.1016/S0010-8545(02)00093-0
41.
41. J. Lee, S. M. Perdue, A. Rodriguez Perez, P. Z. El-Khoury, K. Honkala, and V. A. Apkarian, J. Phys. Chem. A 117, 11655 (2013).
http://dx.doi.org/10.1021/jp311894n
42.
42. B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, and M. E. Kenney, J. Am. Chem. Soc. 106, 7404 (1984).
http://dx.doi.org/10.1021/ja00336a019
43.
43. A. Albrecht Ferro, Ph.D. thesis, University of Colorado, 2001.
44.
44. S. M. Gallagher, A. W. Albrecht, J. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, J. Opt. Soc. Am. B 15, 2338 (1998).
http://dx.doi.org/10.1364/JOSAB.15.002338
45.
45. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998);
http://dx.doi.org/10.1016/S0009-2614(98)01140-3
45.W. M. Zhang, V. Chernyak, and S. Mukamel, J. Chem. Phys. 110, 5011 (1999);
http://dx.doi.org/10.1063/1.478400
45.S. Mukamel and D. Abramavicius, Chem. Rev. 104, 2073 (2004).
http://dx.doi.org/10.1021/cr020681b
46.
46. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
http://dx.doi.org/10.1063/1.1398579
47.
47. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999);
http://dx.doi.org/10.1021/jp9925738
47.T. Mančal, N. Christensson, V. Lukeš, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. Lett. 3, 1497 (2012);
http://dx.doi.org/10.1021/jz300362k
47.V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.07.014
48.
48. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
49.
49. Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
50.
50. V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Nat. Acad. Sci. U.S.A. 110, 1203 (2013).
http://dx.doi.org/10.1073/pnas.1211157110
51.
51. S. Mukamel, J. Phys. Chem. A 117, 10563 (2013);
http://dx.doi.org/10.1021/jp4071086
51.V. Tiwari, W. K. Peters, and D. M. Jonas, Nat. Chem. 6, 173 (2014);
http://dx.doi.org/10.1038/nchem.1881
51.A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. M. Murphy, J. Knoester, T. L. C. Jansen, and R. J. D. Miller, Nat. Chem. 6, 196 (2014).
http://dx.doi.org/10.1038/nchem.1834
52.
52. Y. J. Yan and S. Mukamel, J. Chem. Phys. 89, 5160 (1988).
http://dx.doi.org/10.1063/1.455634
53.
53. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
54.
54. Y. Tanimura and S. Mukamel, Phys. Rev. E 47, 118 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.118
55.
55. Y. Gu, A. Widom, and P. M. Champion, J. Chem. Phys. 100, 2547 (1994).
http://dx.doi.org/10.1063/1.467232
56.
56. E. R. Smith, D. A. Farrow, and D. M. Jonas, J. Chem. Phys. 123, 044102 (2005).
http://dx.doi.org/10.1063/1.1953531
57.
57. E. R. Smith, D. A. Farrow, and D. M. Jonas, J. Chem. Phys. 123, 179902 (2005);
http://dx.doi.org/10.1063/1.2090187
57.E. R. Smith, D. A. Farrow, and D. M. Jonas, J. Chem. Phys. 128, 109902 (2008).
http://dx.doi.org/10.1063/1.2837465
58.
58. M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, J. Chem. Phys. 84, 3901 (1986).
http://dx.doi.org/10.1063/1.450827
59.
59. D. Papousek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier Scientific, New York, 1982).
60.
60. E. U. Condon, Am. J. Phys. 15, 365 (1947).
http://dx.doi.org/10.1119/1.1990977
61.
61. B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, J. Phys. Chem. A 113, 13287 (2009).
http://dx.doi.org/10.1021/jp904504z
62.
62. L. D. Landau and E. M. Lifschitz, Quantum Mechanics, 3rd ed. (Pergamon Press, New York, 1977).
63.
63. H. C. Longuet-Higgins, Mol. Phys. 6, 445 (1963).
http://dx.doi.org/10.1080/00268976300100501
64.
64. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Canada, 1998).
65.
65.See supplementary material at http://dx.doi.org/10.1063/1.4867996 for the procedure used to obtain simultaneous eigenfunctions of the Hamiltonian and of the reflection operators and for discussion of the selection of SiNc model parameters. [Supplementary Material]
66.
66. N. Belabas and D. M. Jonas, Opt. Lett. 29, 1811 (2004).
http://dx.doi.org/10.1364/OL.29.001811
67.
67. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, J. Chem. Phys. 126, 044511 (2007).
http://dx.doi.org/10.1063/1.2426337
68.
68. M. Rätsep, Z.-L. Cai, J. R. Reimers, and A. Freiberg, J. Chem. Phys. 134, 024506 (2011).
http://dx.doi.org/10.1063/1.3518685
69.
69. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
http://dx.doi.org/10.1364/OL.19.000572
70.
70. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Top. Quantum. Electron. 2, 575 (1996).
http://dx.doi.org/10.1109/2944.571757
71.
71. J. D. Hybl, Y. Christophe, and D. M. Jonas, Chem. Phys. 266, 295 (2001).
http://dx.doi.org/10.1016/S0301-0104(01)00233-6
72.
72. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987).
73.
73. R. N. Bracewell, Two Dimensional Imaging (Prentice Hall, Englewood Cliffs, NJ, 1994).
74.
74. R. A. Marcus, Angew. Chem., Int. Ed. 32, 1111 (1993).
http://dx.doi.org/10.1002/anie.199311113
75.
75. J. A. Cina, Phys. Rev. Lett. 66, 1146 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1146
76.
76. E. R. Smith and D. M. Jonas, J. Phys. Chem. A 115, 4101 (2011).
http://dx.doi.org/10.1021/jp201928s
77.
77. G. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).
http://dx.doi.org/10.1146/annurev.physchem.47.1.109
78.
78. W. M. McClain, J. Chem. Phys. 55, 2789 (1971).
http://dx.doi.org/10.1063/1.1676494
79.
79. S. Sunder and H. J. Bernstein, J. Raman Spectrosc. 5, 351 (1976).
http://dx.doi.org/10.1002/jrs.1250050406
80.
80. Y. Liang, M. Bradler, M. Klinger, O. Schalk, M. C. Balaban, T. S. Balaban, E. Riedle, and A.-N. Unterreiner, ChemPlusChem 78, 1244 (2013).
http://dx.doi.org/10.1002/cplu.201300143
81.
81. A. Ishizaki and G. R. Fleming, J. Phys. Chem. B 115, 6227 (2011);
http://dx.doi.org/10.1021/jp112406h
81.K. M. Pelzer, G. B. Griffin, S. K. Gray, and G. S. Engel, J. Chem. Phys. 136, 164508 (2012).
http://dx.doi.org/10.1063/1.4704591
82.
82. N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, J. Phys. Chem. B 116, 7449 (2012).
http://dx.doi.org/10.1021/jp304649c
83.
83. R. S. Knox and D. Gülen, Photochem. Photobiol. 57, 40 (1993);
http://dx.doi.org/10.1111/j.1751-1097.1993.tb02252.x
83.R. S. Knox, D. Gülen, and K. E. Lotterhos, Chem. Phys. Lett. 361, 285 (2002);
http://dx.doi.org/10.1016/S0009-2614(02)00918-1
83.A. Matro and J. A. Cina, J. Phys. Chem. 99, 2568 (1995).
http://dx.doi.org/10.1021/j100009a015
84.
84. D. R. Yarkony, J. Chem. Phys. 114, 2601 (2001).
http://dx.doi.org/10.1063/1.1329644
85.
85. M. R. Philpott, J. Chem. Phys. 47, 4437 (1967);
http://dx.doi.org/10.1063/1.1701650
85.F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. A 117, 6007 (2013).
http://dx.doi.org/10.1021/jp3119605
86.
86. B. A. Gregg, J. Phys. Chem. B 107, 4688 (2003);
http://dx.doi.org/10.1021/jp022507x
86.E. Collini and G. D. Scholes, Science 323, 369 (2009).
http://dx.doi.org/10.1126/science.1164016
87.
87. D. Braun, B. C. Titeca, and A. Ceulemans, J. Porphyrins Phthalocyanines 5, 33 (2001).
http://dx.doi.org/10.1002/1099-1409(200101)5:1<33::AID-JPP303>3.0.CO;2-9
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4867996
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4867996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4867996
2014-03-28
2016-12-11

Abstract

We report measurement and modeling of two-dimensional (2D) electronic spectra of a silicon naphthalocyanine (SiNc) in benzonitrile, a system for which the polarization anisotropy reveals passage through a square-symmetric Jahn-Teller conical intersection in ∼100 fs [D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys.128, 144510 (2008)]. The measured 2D Fourier transform (FT) spectra indicate loss of electronic coherence on a similar timescale. The 2D spectra arising from femtosecond vibronic dynamics through the conical funnel are modeled by full non-adiabatic treatment of the coupled electronic and vibrational dynamics for a pair of un-damped Jahn-Teller active vibrations responsible for both electronic decoherence and population transfer. Additional damped Jahn-Teller active modes that can cause decoherence or population transfer are treated with analytical response functions that can be incorporated into the numerical non-adiabatic calculation by exploiting symmetry assignment of degenerate vibronic eigenstates to one of two electronic states. Franck-Condon active totally symmetric modes are incorporated analytically. The calculations reveal that these conical intersection dynamics alone are incapable of destroying the coherence of the initially prepared wavepacket on the experimentally observed timescale and predict an unobserved recurrence in the photon echo slice at ∼200 fs. Agreement with the experimental two-dimensional electronic spectra necessitates a role for totally symmetric vibrational dynamics in causing the echo slice to decay on a ∼100 fs timescale. This extended model also reproduces the ∼100 fs ultrafast electronic anisotropy decay in SiNc when an “asymmetric solvation mode” with a small stabilization energy of ∼2 cm−1 is included. Although calculations show that inhomogeneities in the energy gap between excited states can broaden the anti-diagonal 2D lineshape, the anti-diagonal width is dominated by totally symmetric vibrational motions in SiNc. For this shallow conical intersection, the non-adiabatic dynamics destroy electronic coherence more slowly than they destroy electronic alignment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4867996.html;jsessionid=KTw__4uJ5rn2msgyn31wFH5K.x-aip-live-03?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4867996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/12/10.1063/1.4867996&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4867996'
Right1,Right2,Right3,