Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4868024
1.
1. G. Herzberg, Molecular Spectra and Molecular Structure. Volume I. Spectra of Diatomic Molecules, 2nd ed. (Krieger Publishing Company, Malabar, 1989).
2.
2. R. A. Durie and G. Herzberg, Can. J. Phys. 38, 806 (1960).
http://dx.doi.org/10.1139/p60-086
3.
3. M. Trefler and H. P. Gush, Phys. Rev. Lett. 20, 703 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.703
4.
4. P. G. Drakopoulos and G. C. Tabisz, Phys. Rev. A 36, 5556 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.5556
5.
5. S. M. Blinder, J. Chem. Phys. 35, 974 (1961).
http://dx.doi.org/10.1063/1.1701248
6.
6. L. Wolniewicz, Can. J. Phys. 53, 1207 (1975).
http://dx.doi.org/10.1139/p75-152
7.
7. L. Wolniewicz, Can. J. Phys. 54, 672 (1976).
http://dx.doi.org/10.1139/p76-075
8.
8. K. Pachucki and J. Komasa, Phys. Chem. Chem. Phys. 12, 9188 (2010).
http://dx.doi.org/10.1039/c0cp00209g
9.
9. I. Dabrowski and G. Herzberg, Can. J. Phys. 54, 525 (1976).
http://dx.doi.org/10.1139/p76-060
10.
10. T. Yoshinari, Y. Ogi, and K. Tsukiyama, J. Phys. Chem. A 108, 7915 (2004).
http://dx.doi.org/10.1021/jp0401022
11.
11. E. Reinhold, W. Hogervorst, and W. Ubachs, Chem. Phys. Lett. 296, 411 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01047-1
12.
12. E. Reinhold, W. Hogervorst, W. Ubachs, and L. Wolniewicz, Phys. Rev. A 60, 1258 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.1258
13.
13. P. M. Dehmer and W. A. Chupka, J. Chem. Phys. 79, 1569 (1983).
http://dx.doi.org/10.1063/1.446029
14.
14. G. D. Dickenson and W. Ubachs, J. Phys. B: At. Mol. Opt. Phys. 45, 145101 (2012).
http://dx.doi.org/10.1088/0953-4075/45/14/145101
15.
15. A. de Lange, E. Reinhold, W. Hogervorst, and W. Ubachs, Can. J. Phys. 78, 567 (2000).
http://dx.doi.org/10.1139/p00-026
16.
16. A. de Lange, E. Reinhold, and W. Ubachs, Int. Rev. Phys. Chem. 21, 257 (2002).
http://dx.doi.org/10.1080/01442350210124515
17.
17. N. Y. Du and C. H. Greene, J. Chem. Phys. 85, 5430 (1986).
http://dx.doi.org/10.1063/1.451553
18.
18. J. M. Gilligan and E. E. Eyler, Phys. Rev. A 46, 3676 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.3676
19.
19. G. M. Greetham, U. Hollenstein, R. Seiler, W. Ubachs, and F. Merkt, Phys. Chem. Chem. Phys. 5, 2528 (2003).
http://dx.doi.org/10.1039/b302876n
20.
20. D. Sprecher, J. Liu, Ch. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 133, 111102 (2010).
http://dx.doi.org/10.1063/1.3483462
21.
21. K. Chakrabarti, D. R. Backodissa-Kiminou, N. Pop, J. Zs. Mezei, O. Motapon, F. Lique, O. Dulieu, A. Wolf, and I. F. Schneider, Phys. Rev. A 87, 022702 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.022702
22.
22. F. Merkt, H. Xu, and R. N. Zare, J. Chem. Phys. 104, 950 (1996).
http://dx.doi.org/10.1063/1.470818
23.
23. D. Sprecher, M. Beyer, and F. Merkt, Mol. Phys. 111, 2100 (2013).
http://dx.doi.org/10.1080/00268976.2013.788743
24.
24. R. Seiler, Th. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103103 (2005).
http://dx.doi.org/10.1063/1.2081891
25.
25. H. Knöckel, B. Bodermann, and E. Tiemann, Software IodineSpec 5 (2008).
26.
26. D. Sprecher, Ch. Jungen, and F. Merkt, J. Chem. Phys. 140, 104303 (2014).
http://dx.doi.org/10.1063/1.4866809
27.
27. M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A 20, 2251 (1979).
http://dx.doi.org/10.1103/PhysRevA.20.2251
28.
28. R. Patel, N. J. A. Jones, and H. H. Fielding, J. Phys. B: At. Mol. Opt. Phys. 40, 1369 (2007).
http://dx.doi.org/10.1088/0953-4075/40/7/006
29.
29. Ch. Seiler, S. D. Hogan, and F. Merkt, Phys. Chem. Chem. Phys. 13, 19000 (2011).
http://dx.doi.org/10.1039/c1cp21276a
30.
30. Th. A. Paul, H. A. Cruse, H. J. Wörner, and F. Merkt, Mol. Phys. 105, 871 (2007).
http://dx.doi.org/10.1080/00268970601146898
31.
31. A. Osterwalder, A. Wüest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004).
http://dx.doi.org/10.1063/1.1792596
32.
32. D. Bakalov, V. I. Korobov, and S. Schiller, Phys. Rev. Lett. 97, 243001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.243001
33.
33. Ch. Jungen, “Elements of quantum defect theory,” in Handbook of High-resolution Spectroscopy, edited by M. Quack and F. Merkt (John Wiley and Sons Ltd., 2011).
34.
34. V. I. Korobov, Phys. Rev. A 77, 022509 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.022509
35.
35. J. J. Kay, S. L. Coy, B. M. Wong, Ch. Jungen, and R. W. Field, J. Chem. Phys. 134, 114313 (2011).
http://dx.doi.org/10.1063/1.3565967
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4868024
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4868024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4868024
2014-03-28
2016-09-27

Abstract

The structure and dynamics of high- Rydberg states belonging to series converging to the ( + = 0, + = 0–2) levels of the electronic ground state of HD+ were studied by high-resolution spectroscopy from the ( = 1, = 1) state under field-free conditions. Three effects of /-symmetry breaking were detected: (i) Single-photon transitions from the  ( = 1, = 1) state of symmetry to the 30d2 and 31g2 Rydberg states of symmetry were observed after careful compensation of the stray electric fields. (ii) The singlet 61p1 Rydberg state of symmetry was found to autoionize to the + = 0, ℓ = 2 ionization continuum of symmetry with a lifetime of 77(10) ns. (iii) Shifts of up to 20 MHz induced by -symmetry mixing were measured for members of the p1 Rydberg series which lie close to d2 Rydberg states. These observations were analyzed in the framework of multichannel quantum-defect theory. From the observed level shifts, the off-diagonal eigenquantum-defect element of singlet-π symmetry was determined to be 0.0023(3) and the corresponding autoionization dynamics could be characterized. The ionization energy of the  ( = 1, = 1) state of HD was determined to be 12 710.544 23(10) cm−1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4868024.html;jsessionid=wYoFVDN2xAqdg3s9cYeKfQ9d.x-aip-live-06?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4868024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/12/10.1063/1.4868024&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4868024'
Right1,Right2,Right3,