Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Linden and T. Reddy, Hand Book of Batteries, 3rd ed. (McGraw Hill, New York, 2001).
2. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, and P. G. Bruce, J. Am. Chem. Soc. 128, 1390 (2006).
3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov, and A. C. Luntz, J. Phys. Chem. Lett. 3, 997 (2012).
4. G. Girishkumar, B. D. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett. 1, 2193 (2010).
5. K. M. Abraham and Z. Jiang, J. Electrochem. Soc. 143, 1 (1996).
6. J. S. Hummelshøj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K. S. Thygesen, A. C. Luntz, K. W. Jacobsen, and J. K. Nørskov, J. Chem. Phys. 132, 071101 (2010).
7. M. D. Radin, J. F. Rodriguez, F. Tian, and D. J. Siegel, J. Am. Chem. Soc. 134, 1093 (2011).
8. M. D. Radin, F. Tian, and D. J. Siegel, J. Mat. Sci. 47, 7564 (2012).
9. J. S. Hummelshøj, A. C. Luntz, and J. K. Nørskov, J. Chem. Phys. 138, 034703 (2013).
10. P. Albertus, G. Girishkumar, B. D. McCloskey, R. S. Sanchez-Carrera, B. Kozinsky, J. Christensen, and A. C. Luntz, J. Electrochem. Soc. 158(3), A343 (2011).
11. J. M. Garcia-Lastra, J. S. G. Myrdal, K. S. Thygesen, and T. Vegge, J. Phys. Chem. C 117, 5568 (2013).
12. J. M. Garcia-Lastra, J. D. Bass, and K. S. Thygesen, J. Chem. Phys. 135, 121101 (2011).
13. V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar, B. D. McCloskey, and A. C. Luntz, J. Chem. Phys. 135, 214704 (2011).
14. J. Chen, J. S. Hummelshøj, K. S. Thygesen, J. S. G. Myrdal, J. K. Nørskov, and T. Vegge, Catal. Today 165, 2 (2011).
15. J. B. Varley, V. Viswanathan, J. K. Nørskov, and A. C. Luntz, Energy Environ. Sci. 7, 720 (2014).
16. A. C. Luntz, V. Viswanathan, J. Voss, J. B. Varley, J. K. Nørskov, R. Scheffler, and A. Speidel, J. Phys. Chem. Lett. 4, 3494 (2013).
17. S. R. Gowda, A. Brunet, G. M. Wallraff, and B. D. McCloskey, J. Phys. Chem. Lett. 4, 276 (2013).
18. R. Younesi, M. Hahlin, F. Björefors, P. Johansson, and K. Edström, Chem. Mater. 25, 77 (2013).
19. M. J. Siegfried and K. S. Choi, Adv. Mat. 16, 1743 (2004).
20. J. S. G. Myrdal and T. Vegge, “DFT study of selective poisoning of Li-Air batteries for increased discharge capacity,” RSC Adv. (to be published).
21. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
22. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
23. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005).
24. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Moller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Hakkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, J. Phys. Condens. Matter 22, 253202 (2010).
25. S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).
26. P. E. Blöchl, Phys. Rev. 50, 17953 (1994).
27. P. E. Blöchl, C. J. Först, and J. Schimpl, Bull. Mater. Sci. 26, 33 (2003).
28. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
29. H. Jonsson, G. Mills, and K. W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Systems, edited by B. J. Berne, G. Cicotti, and D. F. Coker (World Scientific, 1998).
30. G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).
31. G. Henkelman, B. Uberuaga, and H. A. Jónsson, J. Chem. Phys. 113, 9901 (2000).
32. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B 108, 17886 (2004).
33. K. Takechi, T. Shiga, and T. Asaoka, Chem. Commun. 47, 3463 (2011).
34. R. Younesi, P. Norby, and T. Vegge, ECS Electrochem. Lett. 3, A15 (2014).
35.See supplementary material at for Figs. S1–S5. [Supplementary Material]

Data & Media loading...


Article metrics loading...



The effects of LiCO like species originating from reactions between CO and LiO at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO at various nucleation sites on a stepped LiO surface were determined and even a low concentration of CO effectively blocks the step nucleation site and alters the LiO shape due to LiCO formation. Nudged elastic band calculations show that once CO is adsorbed on a step valley site, it is effectively unable to diffuse and impacts the LiO growth mechanism, capacity, and overvoltages. The charging processes are strongly influenced by CO contamination, and exhibit increased overvoltages and increased capacity, as a result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed experimentally already at 1% CO. Large capacity losses and overvoltages are seen at higher CO concentrations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd