1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/12/10.1063/1.4869347
1.
1. G. Y. Adachi, N. Imanaka, and H. Aono, Adv. Mater. (Weinheim, Ger.) 8, 127 (1996).
http://dx.doi.org/10.1002/adma.19960080205
2.
2. M. Duclot and J. L. Souquet, J. Power Sources 97–98, 610 (2001).
http://dx.doi.org/10.1016/S0378-7753(01)00641-3
3.
3. T. Minami, A. Hayashi, and M. Tatsumisago, Solid State Ionics 177, 2715 (2006).
http://dx.doi.org/10.1016/j.ssi.2006.07.017
4.
4. Y.-F. Y. Yao and J. T. Kummer, J. Inorg. Nucl. Chem. 29, 2453 (1967).
http://dx.doi.org/10.1016/0022-1902(67)80301-4
5.
5. J. L. Briant and G. C. Farrington, J. Electrochem. Soc.: Electrochem. Sci. Technol. 128, 1830 (1981).
http://dx.doi.org/10.1149/1.2127746
6.
6. G. C. Farrington, B. S. Dunn, and J. L. Briant, Solid State Ionics 3/4, 405 (1981).
http://dx.doi.org/10.1016/0167-2738(81)90122-3
7.
7. A. Highe and R. W. Vaughan, J. Chem. Phys. 69, 42064208 (1978).
http://dx.doi.org/10.1063/1.437102
8.
8. R. E. Walstedt, R. S. Berg, and J. P. Remeika, Solid State Commun. 37, 209 (1981).
http://dx.doi.org/10.1016/0038-1098(81)91015-2
9.
9. M. Villa, J. L. Bjorkstam, G. Mariotto, A. Fontana, and E. Cazzanelli, J. Chem. Phys. 76, 2804 (1982).
http://dx.doi.org/10.1063/1.443383
10.
10. A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, and M. Wilkening, Phys. Rev. B 83, 094302 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094302
11.
11. W. Bailey, S. Glowinkowski, H. Story, and W. L. Roth, J. Chem. Phys. 64, 4126 (1976).
http://dx.doi.org/10.1063/1.431980
12.
12. M. Wilkening, S. Indris, and P. Heitjans, Phys. Chem. Chem. Phys. 5, 2225 (2003).
http://dx.doi.org/10.1039/b300908d
13.
13. P. Heitjans and S. Indris, J. Phys. Condens. Matter 15, R1257 (2003).
http://dx.doi.org/10.1088/0953-8984/15/30/202
14.
14. M. Wilkening, D. Brork, S. Indris, and P. Heitjans, Phys. Chem. Chem. Phys. 4, 3246 (2002).
http://dx.doi.org/10.1039/b201193j
15.
15. S. Faske, H. Eckert, and M. Vogel, Phys. Rev. B 77, 104301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104301
16.
16. M. Wilkening and P. Heitjans, Chem. Phys. Chem. 13, 53 (2012).
http://dx.doi.org/10.1002/cphc.201100580
17.
17. M. Wilkening, A. Kuhn, and P. Heitjans, Phys. Rev. B 78, 054303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054303
18.
18. M. Wilkening, J. Heine, C. Lyness, A. R. Armstrong, and P. G. Bruce, Phys. Rev. B 80, 064302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064302
19.
19. M. Wilkening and P. Heitjans, Phys. Rev. B 77, 024311 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.024311
20.
20. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
http://dx.doi.org/10.1103/PhysRev.73.679
21.
21. H. Maekawa, Y. Fujimaki, H. Shen, J. Kawamura, and T. Yamamura, Solid State Ionics 177, 2711 (2006).
http://dx.doi.org/10.1016/j.ssi.2006.02.002
22.
22. T. Ohkubo, M. Gobet, V. Sarou-Kanian, C. Bessada, M. Nozawa, and Y. Iwadate, Chem. Phys. Lett. 530, 61 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.01.076
23.
23. Z. Wang, M. Gobet, V. Sarou-Kanian, D. Massiot, C. Bessada, and M. Deschamps, Phys. Chem. Chem. Phys 14, 13535 (2012).
http://dx.doi.org/10.1039/c2cp42391j
24.
24. K. Hayamizu and Y. Aihara, Solid State Ionics 238, 7 (2013).
http://dx.doi.org/10.1016/j.ssi.2013.02.014
25.
25. E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 (1965).
http://dx.doi.org/10.1063/1.1695690
26.
26. M. T. Chowdhury et al., “The study of the lithium ion motion in β-alumina single crystal by NMR spectroscopy,” Solid State Ionics (published online, 2013).
http://dx.doi.org/10.1016/j.ssi.2013.10.022
27.
27. D. B. McWhan, C. M. Varma, F. L. S. Hsu, and J. P. Remeika, Phys. Rev. B 15, 553 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.553
28.
28. P. J. Anthony and A. C. Anderson, Phys. Rev. B 19, 5310 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.5310
29.
29. M. S. Whittingham and R. A. Huggins, in Solid State Chemistry, edited by R. S. Roth and S. J. Schneider Jr. (National Bureau of Standards, Washington, D.C., 1972), Special Publication No. 364, p. 148.
30.
30. K. Nishida, T. Asai, and S. Kawai, Solid State Commun. 48, 701 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90055-8
31.
31. U. V. Alpen, A. Rabenau, and G. H. Talat, Appl. Phys. Lett. 30, 621 (1977).
http://dx.doi.org/10.1063/1.89283
32.
32. B. A. Boukamp and R. A. Huggins, Phys. Lett. A 58, 231 (1976).
http://dx.doi.org/10.1016/0375-9601(76)90082-7
33.
33. O. Kamishima, K. Kawamura, T. Hattori, and J. Kawamura, J. Phys.: Condens. Matter 23, 225404 (2011).
http://dx.doi.org/10.1088/0953-8984/23/22/225404
34.
34. T. Kaneda, J. B. Bates, and J. C. Wang, Solid State Commun. 28, 469 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90840-2
35.
35. R. Collongues, D. Gourier, A. Kahn, J. P. Boilot, P. H. Colomban, and A. Wicker, J. Phys. Chem. Solids 45, 981 (1984).
http://dx.doi.org/10.1016/0022-3697(84)90045-3
36.
36. M. B. Salamon, Topics in Current Physics: Physics of Superionic Conductors (Springer–Verlag, Berlin, 1979), p. 162.
37.
37. W. L. Roth, F. Reidinger, and S. La placa, in Super Ionic conductors, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, 1976).
38.
38. S. G. Bishop and P. J. Bray, J. Chem. Phys 48, 17091717 (1968).
http://dx.doi.org/10.1063/1.1668898
39.
39. R. E. Walstedt, R. Dupree, J. P. Rerneika, and A. Rodriguez, Phys. Rev. B 15, 3442 (1977)
http://dx.doi.org/10.1103/PhysRevB.15.3442
40.
40. M. Villa and J. L. Bjorkstam, Solid State Ionics 9–10, 1421 (1983).
http://dx.doi.org/10.1016/0167-2738(83)90188-1
41.
41. B. A. Huberman and J. B. Boyce, Solid State Commun. 25, 843 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90255-7
42.
42. P. Richards, Solid State Commun. 25, 1019 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90896-7
43.
43. O. Kamishima et al., “Frequency dependence of ionic conductivity in a two-dimensional system of Ag β-alumina,” Solid State Ionics (published online, 2014).
http://dx.doi.org/10.1016/j.ssi.2013.12.021
44.
44. K. L. Ngai and O. Kannert, Solid State Ionics 53, 936 (1992).
http://dx.doi.org/10.1016/0167-2738(92)90275-T
45.
45. H. Kahnt, Ber. Bunsenges. Phys. Chem. 95, 1021 (1991).
http://dx.doi.org/10.1002/bbpc.19910950913
46.
46. P. Maass, J. Petersen, A. Bunde, W. Dieterich, and H. E. Roman, Phys. Rev. Lett. 66, 52 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.52
47.
47. J. Habasaki, K. L. Ngai, and Y. Hiwatari, J. Chem. Phys. 120, 8195 (2004).
http://dx.doi.org/10.1063/1.1690236
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4869347
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4869347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4869347
2014-03-31
2014-12-26

Abstract

The lithium ion diffusion coefficient of a 93% Li βalumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10−11 m2/s in the direction perpendicular to the axis at room temperature. The Li ion diffusion coefficient along the axis direction was found to be very small (6.4 × 10−13 m2/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li βalumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li βalumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li βalumina system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4869347.html;jsessionid=19uw8sp0ehll2.x-aip-live-02?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4869347&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4869347
10.1063/1.4869347
SEARCH_EXPAND_ITEM