Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4869515
1.
1. B. Steele and A. Heinzel, Nature 414, 345 (2001).
http://dx.doi.org/10.1038/35104620
2.
2. A. J. Jacobson, Chem. Mater. 22, 660 (2010).
http://dx.doi.org/10.1021/cm902640j
3.
3. R. Nedelec, S. Uhlenbruck, D. Sebold, V. Haanappel, H.-P. Buchkremer, and D. Stoever, J. Power Sources 205, 157 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2012.01.054
4.
4. Y. Du, N. Sammes, G. Tompsett, D. Zhang, J. Swan, and M. Bowden, J. Electrochem. Soc. 150, A74 (2003).
http://dx.doi.org/10.1149/1.1525268
5.
5. B. Steele, Solid State Ionics 86–88, 1223 (1996).
http://dx.doi.org/10.1016/0167-2738(96)00291-3
6.
6. H. Inaba and H. Tagawa, Solid State Ionics 83, 1 (1996).
http://dx.doi.org/10.1016/0167-2738(95)00229-4
7.
7. M. Mogensen, N. Sammes, and G. Tompsett, Solid State Ionics 129, 63 (2000).
http://dx.doi.org/10.1016/S0167-2738(99)00318-5
8.
8. H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi, and T. Inagaki, Solid State Ionics 140, 191 (2001).
http://dx.doi.org/10.1016/S0167-2738(01)00854-2
9.
9. W. Zajac and J. Molenda, Solid State Ionics 179, 154 (2008).
http://dx.doi.org/10.1016/j.ssi.2007.12.047
10.
10. C. Sevik and T. Cagin, Phys. Rev. B 80, 014108 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014108
11.
11. T. Zhang, J. Ma, L. Kong, P. Hing, and J. Kilner, Solid State Ionics 167, 191 (2004).
http://dx.doi.org/10.1016/j.ssi.2003.11.025
12.
12. T. Gurel and R. Eryigit, Phys. Rev. B 74, 014302 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.014302
13.
13. L. Petit, A. Svane, Z. Szotek, and W. Temmerman, Phys. Rev. B 72, 205118 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205118
14.
14. R. Pornprasertsuk, P. Ramanarayanan, C. Musgrave, and F. Prinz, J. Appl. Phys. 98, 103513 (2005).
http://dx.doi.org/10.1063/1.2135889
15.
15. H. Yao, L. Ouyang, and W.-Y. Ching, J. Am. Ceram. Soc. 90, 3194 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01931.x
16.
16. M. Nakayama and M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009).
http://dx.doi.org/10.1039/b900162j
17.
17. S. Ito, T. Shimazaki, M. Kubo, H. Koinuma, and M. Sumiya, J. Chem. Phys. 135, 241103 (2011).
http://dx.doi.org/10.1063/1.3675680
18.
18. T. Shimazaki, T. Suzuki, and M. Kubo, Theor. Chem. Acc. 130, 1031 (2011).
http://dx.doi.org/10.1007/s00214-011-1012-y
19.
19. K. Serizawa, H. Onuma, H. Kikuchi, K. Suesada, M. Kitagaki, I. Yamashita, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, H. Kajiyama, and A. Miyamoto, Jpn. J. Appl. Phys. 49, 04DJ14 (2010).
http://dx.doi.org/10.1143/JJAP.49.04DJ14
20.
20. Z. Zhu, R. C. Deka, A. Chutia, R. Sahnoun, H. Tsuboi, M. Koyama, N. Hatakeyama, A. Endou, H. Takaba, C. A. Del Carpio, M. Kubo, and A. Miyamoto, J. Phys. Chem. Solids 70, 1248 (2009).
http://dx.doi.org/10.1016/j.jpcs.2009.07.012
21.
21. F. Ahmed, M. K. Alam, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, C. A. Del Carpio, M. Kubo, and A. Miyamoto, J. Phys. Chem. C 113, 15676 (2009).
http://dx.doi.org/10.1021/jp903606e
22.
22. M. K. Alam, F. Ahmed, K. Nakamura, A. Suzuki, R. Sahnoun, H. Tsuboi, M. Koyama, N. Hatakeyama, A. Endou, H. Takaba, C. A. Del Carpio, M. Kubo, and A. Miyamoto, J. Phys. Chem. C 113, 7723 (2009).
http://dx.doi.org/10.1021/jp8088963
23.
23. G. Lu, S. Deng, T. Wang, M. Kohyama, and R. Yamamoto, Phys. Rev. B 69, 134106 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.134106
24.
24. O. Nielsen and R. Martin, Phys. Rev. B 32, 3792 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3792
25.
25. J. Chen, Y. Xu, P. Rulis, L. Ouyang, and W. Ching, Acta Mater. 53, 403 (2005).
http://dx.doi.org/10.1016/j.actamat.2004.09.035
26.
26. J. Chen, L. Ouyang, P. Rulis, A. Misra, and W. Ching, Phys. Rev. Lett. 95, 256103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.256103
27.
27. W. Y. Ching, P. Rulis, and A. Misra, Acta Biomater. 5, 3067 (2009).
http://dx.doi.org/10.1016/j.actbio.2009.04.030
28.
28. V. Deyirmenjian, V. Heine, M. Payne, V. Milman, R. LyndenBell, and M. Finnis, Phys. Rev. B 52, 15191 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.15191
29.
29. M. Kohyama, Phys. Rev. B 65, 184107 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.184107
30.
30. W. Li and T. Wang, Phys. Rev. B 59, 3993 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3993
31.
31. M. Fronzi, A. Soon, B. Delley, E. Traversa, and C. Stampfl, J. Chem. Phys. 131, 104701 (2009).
http://dx.doi.org/10.1063/1.3191784
32.
32. M. Fronzi, S. Piccinin, B. Delley, E. Traversa, and C. Stampfl, Phys. Chem. Chem. Phys. 11, 9188 (2009).
http://dx.doi.org/10.1039/b901831j
33.
33. Y. Peng, J. Li, L. Chen, J. Chen, J. Han, H. Zhang, and W. Han, Environ. Sci. Technol. 46, 2864 (2012).
http://dx.doi.org/10.1021/es203619w
34.
34. N. J. Mosey and E. A. Carter, J. Mech. Phys. Solids 57, 287 (2009).
http://dx.doi.org/10.1016/j.jmps.2008.10.009
35.
35. P. Liao and E. A. Carter, J. Mater. Chem. 20, 6703 (2010).
http://dx.doi.org/10.1039/c0jm01199a
36.
36. J. Diao, K. Gall, and M. Dunn, J. Mech. Phys. Solids 52, 1935 (2004).
http://dx.doi.org/10.1016/j.jmps.2004.03.009
37.
37. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
38.
38. H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi, and Z. Ni, Phys. Lett. A 373, 3359 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.07.048
39.
39. P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, J. Chem. Phys. 125, 034712 (2006).
http://dx.doi.org/10.1063/1.2206184
40.
40. J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, Phys. Rev. B 75, 045121 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045121
41.
41. V. Esposito and E. Traversa, J. Am. Ceram. Soc. 91, 1037 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02347.x
42.
42. K. Sato, H. Yugami, and T. Hashida, J. Mater. Sci. 39, 5765 (2004).
http://dx.doi.org/10.1023/B:JMSC.0000040087.37727.cd
43.
43. H. Kim and M. Bush, Nanostruct. Mater. 11, 361 (1999).
http://dx.doi.org/10.1016/S0965-9773(99)00052-5
44.
44. Y. Jiang, J. B. Adams, and M. van Schilfgaarde, J. Chem. Phys. 123, 064701 (2005).
http://dx.doi.org/10.1063/1.1949189
45.
45. T. X. T. Sayle, B. J. Inkson, A. Karakoti, A. Kumar, M. Molinari, G. Moebus, S. C. Parker, S. Seal, and D. C. Sayle, Nanoscale 3, 1823 (2011).
http://dx.doi.org/10.1039/c0nr00980f
46.
46. E. Wong, P. Sheehan, and C. Lieber, Science 277, 1971 (1997).
http://dx.doi.org/10.1126/science.277.5334.1971
47.
47. D. P. Miannay, Fracture Mechanics, Mechanical Engineering Series (Springer, 1998).
48.
48. A. Tsoga, A. Gupta, A. Naoumidis, and P. Nikolopoulos, Acta Mater. 48, 4709 (2000).
http://dx.doi.org/10.1016/S1359-6454(00)00261-5
49.
49. Y. Leng, S. Chan, S. Jiang, and K. Khor, Solid State Ionics 170, 9 (2004).
http://dx.doi.org/10.1016/j.ssi.2004.02.026