Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4869686
1.
1. A. L. Ringer and C. D. Sherrill, Chem. Eur. J. 14, 2542 (2008).
http://dx.doi.org/10.1002/chem.200701622
2.
2. T. P. Tauer and C. D. Sherrill, J. Phys. Chem. A 109, 10475 (2005).
http://dx.doi.org/10.1021/jp0553479
3.
3. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
4.
4. R. Podeszwa, J. Phys. Chem. A 112, 8884 (2008).
http://dx.doi.org/10.1021/jp803071f
5.
5. H. L. Williams and C. F. Chabalowski, J. Phys. Chem. A 105, 646 (2001).
http://dx.doi.org/10.1021/jp003883p
6.
6. G. Jansen and A. Hesselmann, J. Phys. Chem. A 105, 11156 (2001).
http://dx.doi.org/10.1021/jp0112774
7.
7. A. Hesselmann and G. Jansen, Chem. Phys. Lett. 357, 464 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00538-9
8.
8. A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 123, 214103 (2005).
http://dx.doi.org/10.1063/1.2135288
9.
9. R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. 412, 488 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.07.029
10.
10. A. Heßelmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122, 014103 (2005).
http://dx.doi.org/10.1063/1.1824898
11.
11. R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Chem. Theory Comput. 2, 400 (2006).
http://dx.doi.org/10.1021/ct050304h
12.
12. R. Podeszwa and K. Szalewicz, J. Chem. Phys. 126, 194101 (2007).
http://dx.doi.org/10.1063/1.2733648
13.
13. R. Podeszwa, B. M. Rice, and K. Szalewicz, Phys. Rev. Lett. 101, 115503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.115503
14.
14. S. Wen and G. J. O. Beran, J. Chem. Theory Comput. 7, 3733 (2011).
http://dx.doi.org/10.1021/ct200541h
15.
15. O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
16.
16. R. Podeszwa, B. M. Rice, and K. Szalewicz, Phys. Chem. Chem. Phys. 11, 5512 (2009).
http://dx.doi.org/10.1039/b902015b
17.
17. G. J. O. Beran and K. Nanda, J. Phys. Chem. Lett. 1, 3480 (2010).
http://dx.doi.org/10.1021/jz101383z
18.
18. C. Müller and B. Paulus, Phys. Chem. Chem. Phys. 14, 7605 (2012).
http://dx.doi.org/10.1039/c2cp24020c
19.
19. A. O. de-la Roza and E. R. Johnson, J. Chem. Phys. 136, 174109 (2012).
http://dx.doi.org/10.1063/1.4705760
20.
20. G. E. Bacon, N. A. Curry, and S. A. Wilson, Proc. R. Soc. London Ser. A 279, 98 (1964).
http://dx.doi.org/10.1098/rspa.1964.0092
21.
21. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
http://dx.doi.org/10.1063/1.1723844
22.
22. Y. Muto, J. Phys. Math. Soc. Jpn. 17, 629 (1943).
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4869686 for the aug-cc-pVDZ vs aug-cc-pVTZ CCSD(T) comparison; tables of CCSD(T), SCS-CCSD, and SCS(MI)-CCSD total energies and three-body interaction energies for the first 366 trimers; Cartesian coordinates of all 7750 trimers; DF-MP2 three-body interaction energies for all 7750 trimers; and Cartesian coordinates for a portion of the crystal lattice. [Supplementary Material]
24.
24. D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. 53, 4544 (1970).
http://dx.doi.org/10.1063/1.1673986
25.
25. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
26.
26. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
27.
27. U. Gora, R. Podeszwa, W. Cencek, and K. Szalewicz, J. Chem. Phys. 135, 224102 (2011).
http://dx.doi.org/10.1063/1.3664730
28.
28. E. J. Bylaska et al., NWChem, A Computational Chemistry Package for Parallel Computers, version 5.1, Pacific Northwest National Laboratory, Richland, Washington, 2007.
29.
29. R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J. Harrison, J. L. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong, Comput. Phys. Commun. 128, 260 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00065-5
30.
30. J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).
http://dx.doi.org/10.1063/1.1679012
31.
31. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396 (1979).
http://dx.doi.org/10.1063/1.438728
32.
32. M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).
http://dx.doi.org/10.1016/0009-2614(93)87156-W
33.
33. O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89151-7
34.
34. A. P. Rendell and T. J. Lee, J. Chem. Phys. 101, 400 (1994).
http://dx.doi.org/10.1063/1.468148
35.
35. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
http://dx.doi.org/10.1039/b204199p
36.
36. A. Sodt, J. E. Subotnik, and M. Head-Gordon, J. Chem. Phys. 125, 194109 (2006).
http://dx.doi.org/10.1063/1.2370949
37.
37. H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).
http://dx.doi.org/10.1063/1.1564816
38.
38. N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).
http://dx.doi.org/10.1002/qua.560120408
39.
39. I. Roeggen and E. Wisloff-Nilssen, Chem. Phys. Lett. 132, 154 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80099-9
40.
40. H. Koch, A. S. de Meras, and T. B. Pedersen, J. Chem. Phys. 118, 9481 (2003).
http://dx.doi.org/10.1063/1.1578621
41.
41. F. Aquilante, T. B. Pedersen, and R. Lindh, J. Chem. Phys. 126, 194106 (2007).
http://dx.doi.org/10.1063/1.2736701
42.
42. F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
http://dx.doi.org/10.1063/1.1445115
43.
43. T. B. Pedersen, A. M. J. Sánchezde Merás, and H. Koch, J. Chem. Phys. 120, 8887 (2004).
http://dx.doi.org/10.1063/1.1705575
44.
44. M. Pitonak, F. Aquilante, P. Hobza, P. Neogrady, J. Noga, and M. Urban, Collect. Czech. Chem. Commun. 76, 713 (2011).
http://dx.doi.org/10.1135/cccc2011048
45.
45. F. Aquilante, L. D. Vico, N. Ferre, G. Ghigo, P. Malmqvist, P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010).
http://dx.doi.org/10.1002/jcc.21318
46.
46. J. Boström, M. Pitoňák, F. Aquilante, P. Neogrády, T. B. Pedersen, and R. Lindh, J. Chem. Theory Comput. 8, 1921 (2012).
http://dx.doi.org/10.1021/ct3003018
47.
47. A. E. DePrince and C. D. Sherrill, J. Chem. Theory Comput. 9, 2687 (2013).
http://dx.doi.org/10.1021/ct400250u
48.
48. C. Sosa, J. Geersten, G. W. Trucks, R. J. Barlett, and J. A. Franz, Chem. Phys. Lett. 159, 148 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87399-3
49.
49. W. Klopper, J. Noga, H. Koch, and T. Helgaker, Theor. Chem. Acc. 97, 164 (1997).
http://dx.doi.org/10.1007/s002140050250
50.
50. A. G. Taube and R. J. Bartlett, Collect. Czech. Chem. Commun. 70, 837 (2005).
http://dx.doi.org/10.1135/cccc20050837
51.
51. A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 164101 (2008).
http://dx.doi.org/10.1063/1.2902285
52.
52. A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, J. Chem. Phys. 132, 014109 (2010).
http://dx.doi.org/10.1063/1.3276630
53.
53. A. E. DePrince and C. D. Sherrill, J. Chem. Theory Comput. 9, 293 (2013).
http://dx.doi.org/10.1021/ct300780u
54.
54. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
55.
55. J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford, WIREs Comput. Mol. Sci. 2, 556 (2012).
http://dx.doi.org/10.1002/wcms.93
56.
56. T. Takatani, E. G. Hohenstein, and C. D. Sherrill, J. Chem. Phys. 128, 124111 (2008).
http://dx.doi.org/10.1063/1.2883974
57.
57. M. Pitoňák, J. Řezác, and P. Hobza, Phys. Chem. Chem. Phys. 12, 9611 (2010).
http://dx.doi.org/10.1039/c0cp00158a
58.
58. A. E. DePrince, M. R. Kennedy, B. G. Sumpter, and C. D. Sherrill, Mol. Phys. 112, 844852 (2014).
http://dx.doi.org/10.1080/00268976.2013.874599
59.
59. W. E. Chickos and W. E. Acree Jr., J. Phys. Chem. Ref. Data 31, 537 (2002).
http://dx.doi.org/10.1063/1.1475333
60.
60.For an online compilation of sublimation energies, see the NIST webBook at http://webbook.nist.gov/cgi/cbook.cgi?ID=C71432&Units=SI&Mask=4 and references given there.
61.
61.Reference 14 cites the value as 4.6 kJ mol−1, but Professor Beran has indicated to us that this is a typographical error and the correct value is 3.836 kJ mol−1 or 0.92 kcal mol−1.
62.
62. A. Tkatchenko, J. R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
63.
63. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4869686
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4869686
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4869686
2014-03-27
2016-09-28

Abstract

Coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)] has been applied to trimers that appear in crystalline benzene in order to resolve discrepancies in the literature about the magnitude of non-additive three-body contributions to the lattice energy. The present results indicate a non-additive three-body contribution of 0.89 kcal mol−1, or 7.2% of the revised lattice energy of −12.3 kcal mol−1. For the trimers for which we were able to compute CCSD(T) energies, we obtain a sizeable difference of 0.63 kcal mol−1 between the CCSD(T) and MP2 three-body contributions to the lattice energy, confirming that three-body dispersion dominates over three-body induction. Taking this difference as an estimate of three-body dispersion for the closer trimers, and adding an Axilrod-Teller-Muto estimate of 0.13 kcal mol−1 for long-range contributions yields an overall value of 0.76 kcal mol−1 for three-body dispersion, a significantly smaller value than in several recent studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4869686.html;jsessionid=RG4NNIDVru7vce3VgFJqVCHt.x-aip-live-02?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4869686&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/12/10.1063/1.4869686&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4869686'
Right1,Right2,Right3,