Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/12/10.1063/1.4869718
1.
1. K. Terakura et al., Phys. Rev. B 30, 4734 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4734
2.
2. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
3.
3. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
4.
4. S. L. Dudarev et al., Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
5.
5. M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035105
6.
6. H. J. Kulik et al., Phys. Rev. Lett. 97, 103001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.103001
7.
7. N. J. Mosey, P. Liao, and E. A. Carter, J. Chem. Phys. 129, 014103 (2008).
http://dx.doi.org/10.1063/1.2943142
8.
8. N. Alidoust et al., ChemSusChem 7, 195 (2014).
http://dx.doi.org/10.1002/cssc.201300595
9.
9. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
10.
10. L. Y. Isseroff and E. A. Carter, Phys. Rev. B 85, 235142 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235142
11.
11. A. K. Singh et al., Phys. Rev. Lett. 101, 055502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055502
12.
12. S.-J. Hu et al., Phys. Rev. B 73, 245205 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245205
13.
13. W. J. Lee and Y. S. Kim, J. Korean Phys. Soc. 60, 781 (2012).
http://dx.doi.org/10.3938/jkps.60.781
14.
14.See the supplementary material at http://dx.doi.org/10.1063/1.4869718 for computational details. [Supplementary Material]
15.
15. L. Y. Isseroff and E. A. Carter, Chem. Mater. 25, 253 (2013).
http://dx.doi.org/10.1021/cm3040278
16.
16. M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B 87, 115111 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115111
17.
17. M. Nolan and S. D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006).
http://dx.doi.org/10.1039/b611969g
18.
18. Z. Y. Zhao et al., RSC Adv. 3, 84 (2013).
http://dx.doi.org/10.1039/c2ra22297c
19.
19. R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 67, 075102 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.075102
20.
20. S. Desgreniers, Phys. Rev. B 58, 14102 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14102
21.
21. L. Gerward and J. S. Olsen, J. Synchrotron Radiat. 2, 233 (1995).
http://dx.doi.org/10.1107/S0909049595009447
22.
22. E. H. Kisi and M. M. Elcombe, Acta Crystallogr. C 45, 1867 (1989).
http://dx.doi.org/10.1107/S0108270189004269
23.
23. H. Liu et al., Phys. Rev. B 71, 212103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.212103
24.
24. A. Kirfel and K. Eichhorn, Acta Crystallogr. A 46, 271 (1990).
http://dx.doi.org/10.1107/S0108767389012596
25.
25. K. Karlsson, F. Aryasetiawan, and O. Jepsen, Phys. Rev. B 81, 245113 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245113
26.
26. Y. B. Zhang et al., Phys. Rev. B 84, 075127 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075127
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/12/10.1063/1.4869718
Loading
/content/aip/journal/jcp/140/12/10.1063/1.4869718
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/12/10.1063/1.4869718
2014-03-31
2016-12-05

Abstract

The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/12/1.4869718.html;jsessionid=tCBUSE5ECUH_4BZMhzB9u-hw.x-aip-live-02?itemId=/content/aip/journal/jcp/140/12/10.1063/1.4869718&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/12/10.1063/1.4869718&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4869718'
Right1,Right2,Right3,