1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Roaming dynamics in ion-molecule reactions: Phase space reaction pathways and geometrical interpretation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/13/10.1063/1.4870060
1.
1. M. N. R. Ashfold, N. Nahler, A. Orr-Ewing, O. Vieuxmaire, R. Toomes, T. Kitsopoulos, I. Garcia, D. Chestakov, S. Wu, and D. Parker, Phys. Chem. Chem. Phys. 8, 26 (2006).
http://dx.doi.org/10.1039/b509304j
2.
2. S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
3.
3. W. Forst, Unimolecular Reactions (Cambridge University Press, Cambridge, 2003).
4.
4. T. Baer and W. L. Hase, Unimolecular Reaction Dynamics (Oxford University Press, New York, 1996).
5.
5. R. D. Levine, Molecular Reaction Dynamics (Cambridge University Press, 2009).
6.
6. D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Chambreau, A. G. Suits, X. Zhang, J. Rheinecker, L. B. Harding, and J. M. Bowman, Science 306(5699), 1158 (2004).
http://dx.doi.org/10.1126/science.1104386
7.
7. R. D. van Zee, M. F. Foltz, and C. B. Moore, J. Chem. Phys. 99(3), 1664 (1993).
http://dx.doi.org/10.1063/1.465335
8.
8. H. G. Yu, Phys. Scr. 84, 028104 (2011).
http://dx.doi.org/10.1088/0031-8949/84/02/028104
9.
9. J. M. Bowman and B. C. Shepler, Annu. Rev. Phys. Chem. 62, 531 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103518
10.
10. The Reaction Path in Chemistry: Current Approaches and Perspectives edited by D. Heidrich (Springer, New York, 1995).
11.
11. L. P. Sun, K. Y. Song, and W. L. Hase, Science 296, 875 (2002).
http://dx.doi.org/10.1126/science.1068053
12.
12. J. G. Lopez, G. Vayner, U. Lourderaj, S. V. Addepalli, S. Kato, W. A. Dejong, T. L. Windus, and W. L. Hase, J. Am. Chem. Soc. 129, 9976 (2007).
http://dx.doi.org/10.1021/ja0717360
13.
13. J. Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J. X. Zhang, W. L. Hase, M. Weidemuller, and R. Wester, Science 319, 183 (2008).
http://dx.doi.org/10.1126/science.1150238
14.
14. J. Zhang, J. Mikosch, S. Trippel, R. Otto, M. Weidemüller, R. Wester, and W. L. Hase, J. Phys. Chem. Lett. 1(18), 2747 (2010).
http://dx.doi.org/10.1021/jz1010658
15.
15. M. P. Grubb, M. L. Warter, H. Xiao, S. Maeda, K. Morokuma, and S. W. North, Science 335, 1075 (2012).
http://dx.doi.org/10.1126/science.1216911
16.
16. I. G. Ulusoy, J. F. Stanton, and R. Hernandez, J. Phys. Chem. A 117, 7553 (2013).
http://dx.doi.org/10.1021/jp402322h
17.
17. I. G. Ulusoy, J. F. Stanton, and R. Hernandez, J. Phys. Chem. A 117, 10567 (2013).
http://dx.doi.org/10.1021/jp408997z
18.
18. D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).
http://dx.doi.org/10.1146/annurev.pc.35.100184.001111
19.
19. B. K. Carpenter, Determination of Organic Reaction Mechanisms (Wiley, New York, 1984).
20.
20. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
21.
21. B. C. Shepler, Y. Han, and J. M. Bowman, J. Phys. Chem. Lett. 2(7), 834 (2011).
http://dx.doi.org/10.1021/jz2002138
22.
22. L. B. Harding, S. J. Klippenstein, and A. W. Jasper, J. Phys. Chem. A 116, 6967 (2012).
http://dx.doi.org/10.1021/jp303581k
23.
23. E. P. Wigner, Trans. Faraday Soc. 34, 29 (1938).
http://dx.doi.org/10.1039/tf9383400029
24.
24. H. Waalkens, R. Schubert, and S. Wiggins, Nonlinearity 21, R1 (2008).
http://dx.doi.org/10.1088/0951-7715/21/1/R01
25.
25. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems (Springer-Verlag, New York, 1994).
26.
26. G. S. Ezra, H. Waalkens, and S. Wiggins, J. Chem. Phys. 130, 164118 (2009).
http://dx.doi.org/10.1063/1.3119365
27.
27. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. (Springer-Verlag, New York, 2003).
28.
28. P. Pechukas, Ann. Rev. Phys. Chem. 32, 159 (1981).
http://dx.doi.org/10.1146/annurev.pc.32.100181.001111
29.
29. P. Langevin, Ann. Chim. Phys. 5, 245 (1905).
30.
30. W. J. Chesnavich and M. T. Bowers, Theory of Ion-Neutral Interactions: Application of Transition State Theory Concepts to Both Collisional and Reactive Properties of Simple Systems (Pergamon Press, 1982).
31.
31. W. H. Miller, J. Chem. Phys. 65, 2216 (1976).
http://dx.doi.org/10.1063/1.433379
32.
32. W. J. Chesnavich, J. Chem. Phys. 84, 2615 (1986).
http://dx.doi.org/10.1063/1.450331
33.
33. X. Hu and W. L. Hase, J. Phys. Chem. 93, 6029 (1989).
http://dx.doi.org/10.1021/j100353a020
34.
34. F. A. L. Mauguière, P. Collins, G. S. Ezra, S. C. Farantos, and S. Wiggins, Chem. Phys. Lett. 592, 282 (2014).
http://dx.doi.org/10.1016/j.cplett.2013.12.051
35.
35. L. Wiesenfeld, Adv. Chem. Phys. 130, 217 (2005).
http://dx.doi.org/10.1002/0471712531.ch4
36.
36. E. Thiele, J. Chem. Phys. 36(6), 1466 (1962).
http://dx.doi.org/10.1063/1.1732765
37.
37. E. Thiele, J. Chem. Phys. 38(8), 1959 (1963).
http://dx.doi.org/10.1063/1.1733903
38.
38. S. R. Vande Linde and W. L. Hase, J. Phys. Chem. 94(16), 6148 (1990).
http://dx.doi.org/10.1021/j100379a002
39.
39. G. H. Peslherbe, H. Wang, and W. L. Hase, J. Chem. Phys. 102(14), 5626 (1995).
http://dx.doi.org/10.1063/1.469294
40.
40. S. J. Klippenstein, Y. Georgievskii, and L. B. Harding, J. Phys. Chem. A 115, 14370 (2011).
http://dx.doi.org/10.1021/jp208347j
41.
41. W. J. Chesnavich, L. Bass, T. Su, and M. T. Bowers, J. Chem. Phys. 74(4), 2228 (1981).
http://dx.doi.org/10.1063/1.441385
42.
42. P. Pechukas and F. J. McLafferty, J. Chem. Phys. 58(4), 1622 (1973).
http://dx.doi.org/10.1063/1.1679404
43.
43. P. Pechukas and E. Pollak, J. Chem. Phys. 67(12), 5976 (1977).
http://dx.doi.org/10.1063/1.434777
44.
44. E. Pollak and P. Pechukas, J. Chem. Phys. 69, 1218 (1978).
http://dx.doi.org/10.1063/1.436658
45.
45. P. Pechukas and E. Pollak, J. Chem. Phys. 71(5), 2062 (1979).
http://dx.doi.org/10.1063/1.438575
46.
46. H. Waalkens and S. Wiggins, J. Phys. A: Math. Gen. 37(35), L435 (2004).
http://dx.doi.org/10.1088/0305-4470/37/35/L02
47.
47. S. Wiggins, L. Wiesenfeld, C. Jaffé, T. Uzer et al., Phys. Rev. Lett. 86(24), 5478 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5478
48.
48. N. Fenichel, Indiana Univ. Math. J. 21 , 193226 (1971/1972).
http://dx.doi.org/10.1512/iumj.1972.21.21017
49.
49. N. Fenichel, Indiana Univ. Math. J. 26, 81 (1977).
http://dx.doi.org/10.1512/iumj.1977.26.26006
50.
50. N. Fenichel, Indiana Univ. Math. J. 23, 1109 (1974).
http://dx.doi.org/10.1512/iumj.1974.23.23090
51.
51. S. C. Farantos, R. Schinke, H. Guo, and M. Joyeux, Chem. Rev. 109(9), 4248 (2009).
http://dx.doi.org/10.1021/cr900069m
52.
52. F. Mauguiere, M. Rey, V. Tyuterev, J. Suarez, and S. C. Farantos, J. Phys. Chem. A 114(36), 9836 (2010).
http://dx.doi.org/10.1021/jp1030569
53.
53. S. C. Farantos, Comput. Phys. Commun. 108, 240 (1998).
http://dx.doi.org/10.1016/S0010-4655(97)00131-8
54.
54. A. D. Perry and S. Wiggins, Physica D 71(1–2), 102 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90184-8
55.
55. A. Morbidelli and A. Giorgilli, J. Stat. Phys. 78(5-6), 1607 (1995).
http://dx.doi.org/10.1007/BF02180145
56.
56. L. B. Harding, S. J. Klippenstein, and A. W. Jasper, Phys. Chem. Chem. Phys. 9, 4055 (2007).
http://dx.doi.org/10.1039/b705390h
57.
57. L. B. Harding and S. J. Klippenstein, J. Phys. Chem. Lett. 1(20), 3016 (2010).
http://dx.doi.org/10.1021/jz101160u
58.
58. S. E. Newhouse, Publ. Math. IHES 50, 101 (1979).
http://dx.doi.org/10.1007/BF02684771
59.
59. P. Duarte, Dyn. Stab. Syst. 14(4), 339 (1999).
http://dx.doi.org/10.1080/026811199281930
60.
60. S. V. Gonchenko and L. P. Silnikov, J. Stat. Phys. 101(1/2), 321 (2000).
http://dx.doi.org/10.1023/A:1026418323000
61.
61. F. A. L. Mauguiere, S. C. Farantos, J. Suarez, and R. Schinke, J. Chem. Phys. 134(24), 244302 (2011).
http://dx.doi.org/10.1063/1.3601754
62.
62. N. B. Slater, J. Chem. Phys. 24(6), 1256 (1956).
http://dx.doi.org/10.1063/1.1742756
63.
63. N. B. Slater, Theory of Unimolecular Reactions (Cornell University Press, Ithaca, NY, 1959).
64.
64. D. L. Bunker, J. Chem. Phys. 37, 393 (1962).
http://dx.doi.org/10.1063/1.1701333
65.
65. D. L. Bunker, J. Chem. Phys. 40, 1946 (1964).
http://dx.doi.org/10.1063/1.1725427
66.
66. D. L. Bunker and W. L. Hase, J. Chem. Phys. 59, 4621 (1973).
http://dx.doi.org/10.1063/1.1680672
67.
67. R. S. Dumont and P. Brumer, J. Phys. Chem. 90, 3509 (1986).
http://dx.doi.org/10.1021/j100407a012
68.
68. N. De Leon and B. J. Berne, J. Chem. Phys. 75, 3495 (1981).
http://dx.doi.org/10.1063/1.442459
69.
69. B. J. Berne, N. DeLeon, and R. O. Rosenberg, J. Phys. Chem. 86, 2166 (1982).
http://dx.doi.org/10.1021/j100209a009
70.
70. J. Binney, O. E. Gerhard, and P. Hut, Mon. Not. R. Astron. Soc. 215, 59 (1985).
71.
71. H.-D. Meyer, J. Chem. Phys. 84, 3147 (1986).
http://dx.doi.org/10.1063/1.450296
72.
72. P. Brumer, D. E. Fitz, and D. Wardlaw, J. Chem. Phys. 72(1), 386 (1980).
http://dx.doi.org/10.1063/1.438861
73.
73. E. Pollak, J. Chem. Phys. 74, 6763 (1981).
http://dx.doi.org/10.1063/1.441080
74.
74. H. Waalkens, A. Burbanks, and S. Wiggins, Phys. Rev. Lett. 95, 084301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.084301
75.
75. H. Waalkens, A. Burbanks, and S. Wiggins, J. Phys. A 38, L759 (2005).
http://dx.doi.org/10.1088/0305-4470/38/45/L03
76.
76. W. L. Hase, D. G. Buckowski, and K. N. Swamy, J. Phys. Chem. 87, 2754 (1983).
http://dx.doi.org/10.1021/j100238a014
77.
77. S. Y. Grebenshchikov, R. Schinke, and W. L. Hase, in Unimolecular Kinetics: Part 1. The Reaction Step, Comprehensive Chemical Kinetics Vol. 39, edited by N. J. B. Greene (Elsevier, New York, 2003), pp. 105242.
78.
78. M. Berblinger and C. Schlier, J. Chem. Phys. 101, 4750 (1994).
http://dx.doi.org/10.1063/1.467397
79.
79. S. K. Gray and S. A. Rice, J. Chem. Phys. 86, 2020 (1987).
http://dx.doi.org/10.1063/1.452152
80.
80. J. N. Stember and G. S. Ezra, Chem. Phys. 337, 11 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.019
81.
81. Y. Nagahata, H. Teramoto, C. Li, S. Kawai, and T. Komatsuzaki, Phys. Rev. E 88, 042923 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.042923
82.
82. M. Grice, B. Andrews, and W. Chesnavich, J. Chem. Phys. 87, 959 (1987).
http://dx.doi.org/10.1063/1.453251
83.
83. F. Mauguiere, P. Collins, G. Ezra, and S. Wiggins, J. Chem. Phys. 138, 134118 (2013).
http://dx.doi.org/10.1063/1.4798641
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/13/10.1063/1.4870060
Loading
/content/aip/journal/jcp/140/13/10.1063/1.4870060
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/13/10.1063/1.4870060
2014-04-07
2014-08-27

Abstract

A model Hamiltonian for the reaction + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition states and conventional/roaming reaction pathways are identified in terms of time-invariant objects in phase space. These are dividing surfaces associated with normally hyperbolic invariant manifolds (NHIMs). For systems with two degrees of freedom NHIMS are unstable periodic orbits which, in conjunction with their stable and unstable manifolds, unambiguously define the (locally) non-recrossing dividing surfaces assumed in statistical theories of reaction rates. By constructing periodic orbit continuation/bifurcation diagrams for two values of the potential function parameter corresponding to late and early transition states, respectively, and using the total energy as another parameter, we dynamically assign different regions of phase space to reactants and products as well as to conventional and roaming reaction pathways. The classical dynamics of the system are investigated by uniformly sampling trajectory initial conditions on the dividing surfaces. Trajectories are classified into four different categories: direct reactive and non-reactive trajectories, which lead to the formation of molecular and radical products respectively, and roaming reactive and non-reactive orbiting trajectories, which represent alternative pathways to form molecular and radical products. By analysing gap time distributions at several energies, we demonstrate that the phase space structure of the roaming region, which is strongly influenced by nonlinear resonances between the two degrees of freedom, results in nonexponential (nonstatistical) decay.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/13/1.4870060.html;jsessionid=4rovgs26mqjgv.x-aip-live-06?itemId=/content/aip/journal/jcp/140/13/10.1063/1.4870060&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Roaming dynamics in ion-molecule reactions: Phase space reaction pathways and geometrical interpretation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/13/10.1063/1.4870060
10.1063/1.4870060
SEARCH_EXPAND_ITEM