Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/13/10.1063/1.4870088
1.
1. J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
http://dx.doi.org/10.1021/ma00130a008
2.
2. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science 265, 1599 (1994).
http://dx.doi.org/10.1126/science.8079175
3.
3. P. L. Hansen and R. Podgornik, J. Chem. Phys. 114, 8637 (2001).
http://dx.doi.org/10.1063/1.1355261
4.
4. A. Rosa, T. X. Hoang, D. Marenduzzo, and A. Maritan, Macromolecules 36, 10095 (2003).
http://dx.doi.org/10.1021/ma0348831
5.
5. N. M. Toan, D. Marenduzzo, and C. Micheletti, Biophys. J. 89, 80 (2005).
http://dx.doi.org/10.1529/biophysj.104.058081
6.
6. C. R. Calladine and H. Drew, Understanding DNA (Academic Press, San Diego, 1992).
7.
7. J. F. Marko and E. D. Siggia, Science 265, 506 (1994).
http://dx.doi.org/10.1126/science.8036491
8.
8. J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994).
http://dx.doi.org/10.1021/ma00082a015
9.
9. N. Gilbert and J. Allan, Curr. Opin. Genet. Dev. 25, 15 (2014).
http://dx.doi.org/10.1016/j.gde.2013.10.013
10.
10. J. F. Marko and E. D. Siggia, Phys. Rev. E 52, 2912 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.2912
11.
11. S. Forth, C. Deufel, M. Y. Sheinin, B. Daniels, J. P. Sethna, and M. D. Wang, Phys. Rev. Lett. 100, 148301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.148301
12.
12. L. Postow, C. D. Hardy, J. Arsuaga, and N. R. Cozzarelli, Genes Dev. 18, 1766 (2004).
http://dx.doi.org/10.1101/gad.1207504
13.
13. T. B. K. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub, Science 342, 731 (2013).
http://dx.doi.org/10.1126/science.1242059
14.
14. L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84, 7024 (1987).
http://dx.doi.org/10.1073/pnas.84.20.7024
15.
15. Y. P. Tsao, H. Y. Wu, and L. F. Liu, Cell. 56, 111 (1989).
http://dx.doi.org/10.1016/0092-8674(89)90989-6
16.
16. S. Deng, R. A. Stein, and N. P. Higgins, Mol. Microbiol. 57, 1511 (2005).
http://dx.doi.org/10.1111/j.1365-2958.2005.04796.x
17.
17. S. P. Mielke, W. H. Fink, V. V. Krishnan, N. Groenbech-Jensen, and C. J. Benham, J. Chem. Phys. 121, 8104 (2004).
http://dx.doi.org/10.1063/1.1799613
18.
18. C. Naughton et al., Nat. Struct. Mol. Biol. 20, 387 (2013).
http://dx.doi.org/10.1038/nsmb.2509
19.
19. D. J. Clark and G. Felsenfeld, EMBO J. 10, 387 (1991).
20.
20. J. Roca, Chromosoma 120, 323 (2011).
http://dx.doi.org/10.1007/s00412-011-0324-y
21.
21. N. Mondal and J. D. Parvin, Nature (London) 413, 435 (2001).
http://dx.doi.org/10.1038/35096590
22.
22. C. Bouchiat and M. Mézard, Eur. Phys. J. E 2, 377 (2000).
http://dx.doi.org/10.1007/s101890050020
23.
23. B. S. Fujimoto and J. M. Schurr, Nature (London) 344, 175 (1990).
http://dx.doi.org/10.1038/344175a0
24.
24. J. Lipfert, J. W. J. Kerssemakers, T. Jager, and N. H. Dekker, Nat. Methods 7, 977 (2010).
http://dx.doi.org/10.1038/nmeth.1520
25.
25. T. R. Powers, Rev. Mod. Phys. 82, 1607 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1607
26.
26. W. K. Olson, Curr. Opin. Struct. Biol. 6, 242 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80082-0
27.
27. R. K. Z. Tan and S. C. Harvey, J. Mol. Biol. 205, 573 (1989).
http://dx.doi.org/10.1016/0022-2836(89)90227-1
28.
28. G. C. Rollins, A. S. Petrov, and S. C. Harvey, Biophys. J. 94, L38 (2008).
http://dx.doi.org/10.1529/biophysj.107.126698
29.
29. T. A. Knotts, N. Rathore, D. C. Schwartz, and J. J. de Pablo, J. Chem. Phys. 126, 084901 (2007).
http://dx.doi.org/10.1063/1.2431804
30.
30. J. Huang, T. Schlick, and A. Vologodskii, Proc. Natl. Acad. Sci. U.S.A. 98, 968 (2001).
http://dx.doi.org/10.1073/pnas.98.3.968
31.
31. T. Schlick and W. K. Olson, Science 257, 1110 (1992).
http://dx.doi.org/10.1126/science.257.5073.1110
32.
32. T. Schlick, Curr. Opin. Struct. Biol. 5, 245 (1995).
http://dx.doi.org/10.1016/0959-440X(95)80083-2
33.
33. S. Rappaport and Y. Rabin, Macromolecules 37, 7847 (2004).
http://dx.doi.org/10.1021/ma048320g
34.
34. G. Chirico and J. Langowski, Biopolymers 34, 415 (1994).
http://dx.doi.org/10.1002/bip.360340313
35.
35. G. Chirico and J. Langowski, Biophys. J. 71, 955 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79299-8
36.
36. S. Allison, R. Austin, and M. Hogan, J. Chem. Phys. 90, 3843 (1989).
http://dx.doi.org/10.1063/1.455790
37.
37. S. J. Plimpton, J. Comp. Phys. 117, 1 (1995), see http://lammps.sandia.gov.
http://dx.doi.org/10.1006/jcph.1995.1039
38.
38. S. M. Rappaport and Y. Rabin, J. Phys. A 40, 4455 (2007).
http://dx.doi.org/10.1088/1751-8113/40/17/003
39.
39.In the case of a linear rod there are N position vectors describing the vertices of N − 1 segments, with tangents with i = 1, …, N − 1. For a circular rod there are N segments and .
40.
40. D. Marenduzzo, C. Micheletti, H. Seyed-allaei, A. Trovato, and A. Maritan, J. Phys. A 38, L277 (2005).
http://dx.doi.org/10.1088/0305-4470/38/17/L01
41.
41. F. Benedetti, J. Dorier, Y. Burnier, and A. Stasiak, Nucl. Aci. Res. 42, 2848 (2013).
http://dx.doi.org/10.1093/nar/gkt1353
42.
42. C. A. Brackley, J. Allan, D. Keszenman-Pereyra, and D. Marenduzzo, “How to make chromatin: Topological enzymes aid chromatin self-assembly in silico” (unpublished).
43.
43.The two potentials are however equivalent in the limit where all of αi, βi, and γi are small, a regime which is forced by the Hamiltonian considering either of the dihedrals.
44.
44.The angles ζi are minimised by choosing a large alignment energy κa; in practice, this can be set as large as possible subject to numerical stability.
45.
45.Source code for the LAMMPS orientation angle style discussed in Sec. V B is available on request from the authors.
46.
46. J. D. Moroz and P. Nelson, Proc. Natl. Acad. Sci. U.S.A. 94, 14418 (1997).
http://dx.doi.org/10.1073/pnas.94.26.14418
47.
47. S. A. Koehler and T. R. Powers, Phys. Rev. Lett. 85, 4827 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4827
48.
48. C. W. Wolgemuth, T. R. Powers, and R. E. Goldstein, Phys. Rev. Lett. 84, 1623 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1623
49.
49. R. D. Kamien, Rev. Mod. Phys. 74, 953 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.953
50.
50. G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).
51.
51.If R is a rotation matrix for rotating a vector by an angle δϕ about some axis , then . In the limit δϕ → 0, .
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/13/10.1063/1.4870088
Loading
/content/aip/journal/jcp/140/13/10.1063/1.4870088
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/13/10.1063/1.4870088
2014-04-04
2016-07-27

Abstract

An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/13/1.4870088.html;jsessionid=hwaSiGIusRRA3M-m8vM4tDid.x-aip-live-06?itemId=/content/aip/journal/jcp/140/13/10.1063/1.4870088&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/13/10.1063/1.4870088&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/13/10.1063/1.4870088'
Right1,Right2,Right3,