Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/13/10.1063/1.4870245
1.
1. J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).
http://dx.doi.org/10.1002/anie.200300611
2.
2. D. M. Brink and S. Stringari, Z. Phys. D 15, 257 (1990).
http://dx.doi.org/10.1007/BF01437187
3.
3. M. Hartmann, R. E. Miller, J. P. Toennies, and A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1566
4.
4. P. Sindzingre, M. L. Klein, and D. M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1601
5.
5. M. V. Rama Krishna and K. B. Whaley, Phys. Rev. Lett. 64, 1126 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1126
6.
6. S. A. Chin and E. Krotscheck, Phys. Rev. B 45, 852 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.852
7.
7. S. Grebenev, J. P. Toennies, and A. Vilesov, Science 279, 2083 (1998).
http://dx.doi.org/10.1126/science.279.5359.2083
8.
8. D. Pentlehner, J. H. Nielsen, A. Slenczka, K. Molmer, and H. Stapelfeldt, Phys. Rev. Lett. 110, 093002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.093002
9.
9. N. B. Brauer, S. Smolarek, E. Loginov, D. Mateo, A. Hernando, M. Pi, M. Barranco, W. J. Buma, and M. Drabbels, Phys. Rev. Lett. 111, 153002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.153002
10.
10. D. Mateo, A. Hernando, M. Barranco, E. Loginov, M. Drabbels, and M. Pi, Phys. Chem. Chem. Phys. 15, 18388 (2013).
http://dx.doi.org/10.1039/c3cp52221k
11.
11. L. F. Gomez, E. Loginov, and A. Vilesov, Phys. Rev. Lett. 108, 155302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155302
12.
12. K. K. Lehmann and R. Schmied, Phys. Rev. B 68, 224520 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.224520
13.
13. F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1028
14.
14. D. Jin and H. J. Maris, J. Low Temp. Phys. 158, 317 (2010).
http://dx.doi.org/10.1007/s10909-009-9936-5
15.
15. D. F. Jin and W. Guo, Phys. Rev. B: Condens. Matter 82, 094524 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094524
16.
16. F. Ancilotto, M. Barranco, and M. Pi, Phys. Rev. B: Condens. Matter 82, 014517 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014517
17.
17. N. G. Berloff, Phys. Lett. A 277, 240 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00715-5
18.
18. C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Philos. Trans. R. Soc. London, Ser. A 311, 433 (1984).
http://dx.doi.org/10.1098/rsta.1984.0038
19.
19. R. J. Donnelly, Quantized Vortices in Helium II, Cambridge Studies in Low Temperature Physics (Cambridge University Press, Cambridge, 1991), Vol. 3.
20.
20. X. Zhang and M. Drabbels, J. Chem. Phys. 137, 051102 (2012).
http://dx.doi.org/10.1063/1.4743900
21.
21. D. Mateo, D. Jin, M. Barranco, and M. Pi, J. Chem. Phys. 134, 044507 (2011).
http://dx.doi.org/10.1063/1.3544216
22.
22. F. Ancilotto, M. Barranco, F. Caupin, R. Mayol, and M. Pi, Phys. Rev. B 72, 214522 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214522
23.
23. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B 52, 1193 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.1193
24.
24. F. Ancilotto, M. Pi, R. Mayol, M. Barranco, and K. K. Lehmann, J. Phys. Chem. A 111, 12695 (2007).
http://dx.doi.org/10.1021/jp076069b
25.
25. S. L. Fiedler, D. Mateo, T. Aleksanyan, and J. Eloranta, Phys. Rev. B 86, 144522 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.144522
26.
26. A. Hernando, M. Barranco, R. Mayol, M. Pi, and M. Krośnicki, Phys. Rev. B 77, 024513 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.024513
27.
27. M. Kaupp, P. V. Schleyer, H. Stoll, and H. Preuss, J. Chem. Phys. 94, 1360 (1991).
http://dx.doi.org/10.1063/1.459993
28.
28. F. Weigend and A. Baldes, J. Chem. Phys. 133, 174102 (2010).
http://dx.doi.org/10.1063/1.3495681
29.
29. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 100, 2975 (1994).
http://dx.doi.org/10.1063/1.466439
30.
30. F.-M. Tao, Z. Li, and Y.-K. Pan, Chem. Phys. Lett. 255, 179 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00361-2
31.
31. A. Hernando, R. Mayol, M. Pi, M. Barranco, F. Ancilotto, O. Bünermann, and F. Stienkemeier, J. Phys. Chem. A 111, 7303 (2007).
http://dx.doi.org/10.1021/jp0701385
32.
32. F. Stienkemeier, F. Meier, and H. O. Lutz, Eur. Phys. J. D 9, 313 (1999).
http://dx.doi.org/10.1007/PL00010927
33.
33. E. Loginov and M. Drabbels, J. Chem. Phys. 136, 154302 (2012).
http://dx.doi.org/10.1063/1.3701565
34.
34. A. Hernando, M. Barranco, M. Pi, E. Loginov, M. Langlet, and M. Drabbels, Phys. Chem. Chem. Phys. 14, 3996 (2012).
http://dx.doi.org/10.1039/c2cp23526a
35.
35. D. Mateo, A. Hernando, M. Barranco, R. Mayol, and M. Pi, Phys. Rev. B 83, 174505 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174505
36.
36. P. H. Roberts and J. Grant, J. Phys. A 4, 55 (1971).
http://dx.doi.org/10.1088/0305-4470/4/1/009
37.
37. E. Loginov and M. Drabbels, Phys. Rev. Lett. 106, 083401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.083401
38.
38. M. Theisen, F. Lackner, and W. E. Ernst, Phys. Chem. Chem. Phys. 12, 14861 (2010).
http://dx.doi.org/10.1039/c0cp01283a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/13/10.1063/1.4870245
Loading
/content/aip/journal/jcp/140/13/10.1063/1.4870245
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/13/10.1063/1.4870245
2014-04-03
2016-09-30

Abstract

Whereas most of the phenomena associated with superfluidity have been observed in finite-size helium systems, the nucleation of quantized vortices has proven elusive. Here we show using time-dependent density functional simulations that the solvation of a Ba+ ion created by photoionization of neutral Ba at the surface of a 4He nanodroplet leads to the nucleation of a quantized ring vortex. The vortex is nucleated on a 10 ps timescale at the equator of a solid-like solvation structure that forms around the Ba+ ion. The process is expected to be quite general and very efficient under standard experimental conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/13/1.4870245.html;jsessionid=3jwjXYHR5krWE5zTeTQqDEXM.x-aip-live-02?itemId=/content/aip/journal/jcp/140/13/10.1063/1.4870245&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/13/10.1063/1.4870245&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/13/10.1063/1.4870245'
Right1,Right2,Right3,