Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000);
1.A. H. Zewail, Science 328, 187 (2010).
2. K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007).
3. C. I. Blaga, J. Xu, A. D. Dichiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, Nature (London) 483, 194 (2012);
3.M. Y. Ivanov, Nature (London) 483, 161 (2012).
4. X. B. Wang, H. K. Woo, and L. S. Wang, J. Chem. Phys. 123, 051106 (2005).
5. N. Moazzen-Ahmadi and A. R. W. McKellar, Int. Rev. Phys. Chem. 32, 611 (2013).
6. D. Bressanini and G. Morosi, J. Phys. Chem. A 115, 10880 (2011).
7. I. Plesser, Z. Vager, and R. Naaman, Phys. Rev. Lett. 56, 1559 (1986);
7.Z. Vager, R. Naaman, and E. P. Kanter, Science 244, 426 (1989).
8. R. K. Singh, G. S. Lodha, V. Sharma, I. A. Prajapati, K. P. Subramanian, and B. Bapat, Phys. Rev. A 74, 022708 (2006).
9. Z. D. Pesic, D. Rolles, R. C. Bilodeau, I. Dimitriu, and N. Berrah, Phys. Rev. A 78, 051401R (2008).
10. J. H. Sanderson, T. Nishide, H. Shiromaru, Y. Achiba, and N. Kobayashi, Phys. Rev. A 59, 4817 (1999).
11. N. Neumann, D. Hant, L. P. H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M. S. Schoffler, K. Kreidi, O. Jagutzki, H. Schmidt, and R. Dorner, Phys. Rev. Lett. 104, 103201 (2010).
12. M. R. Jana, P. N. Ghosh, B. Bapat, R. K. Kushawaha, K. Saha, I. A. Prajapati, and C. P. Safvan, Phys. Rev. A 84, 062715 (2011).
13. A. Hishikawa, A. Iwamae, and K. Yamanouchi, Phys. Rev. Lett. 83, 1127 (1999).
14. I. Bocharova, R. Karimi et al., Phys. Rev. Lett. 107, 063201 (2011).
15. C. Wu, C. Wu, D. Song, H. Su, Y. Yang, Z. Wu, X. Liu, H. Liu, M. Li, Y. Deng, Y. Liu, L.-Y. Peng, H. Jiang, and Q. Gong, Phys. Rev. Lett. 110, 103601 (2013).
16. F. Legare, K. F. Lee, I. V. Litvinyuk, P. W. Dooley, A. D. Bandrauk, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. A 72, 052717 (2005).
17. E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, Science 317, 1374 (2007).
18. B. Ulrich, A. Vredenborg, A. Malakzadeh, L. Ph. H. Schmidt, T. Havermeier, M. Meckel, K. Cole, M. Smolarski, Z. Chang, T. Jahnke, and R. Dorner, J. Phys. Chem. A 115, 6936. (2011).
19. J. Wu, M. Kuniski, L. Ph. H. Schmidt, T. Jahnke, and R. Dorner, J. Chem. Phys. 137, 104308 (2012).
20. M. Pitzer et al., Science 341, 1096 (2013).
21. K. Yamanouchi, Science 295, 1659 (2002).
22. J. Purnell, E. M. Snyder, S. Wei, and A. W. Castleman, Chem. Phys. Lett. 229, 333 (1994).
23. C. Cornaggia, Phys. Rev. A 54, R2555 (1996).
24. K. W. D. Ledingham, D. J. Smith, R. P. Singhal, T. McCanny, P. Graham, H. S. Kilic, W. X. Peng, A. J. Langley, P. F. Taday, and C. Kosmidis, J. Phys. Chem. A 103, 2952 (1999).
25. E. Baldit, S. Saugout, and C. Cornaggia, Phys. Rev. A 71, 021403 (2005).
26. J. P. Brichta, S. J. Walker, R. Helsten, and J. H. Sanderson, J. Phys. B 40, 117 (2007).
27. H. L. Xu, C. Marceau, K. Nakai, T. Okino, S. L. Chin, and K. Yamanouchi, J. Chem. Phys. 133, 071103 (2010).
28. C. Wu, Y. Yang, Z. Wu, B. Chen, H. Dong, X. Liu, Y. Deng, H. Liu, Y. Liu, and Q. Gong, Phys. Chem. Chem. Phys. 13, 18398 (2011).
29. K. Patel, P. R. Butler, A. M. Ellis, and M. D. Wheeler, J. Chem. Phys. 119, 909 (2003).
30. C. R. Munteanu, J. L. Cacheiro, and B. Fernández, J. Chem. Phys. 121, 10419 (2004).
31. A. K. Dham, W. J. Meath, J. W. Jechow, and F. R. McCourt, J. Chem. Phys. 124, 034308 (2006).
32.See supplementary material at for the description of the experimental method and the experimental data for plotting Fig. 1. [Supplementary Material]
33. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.

Data & Media loading...


Article metrics loading...



We experimentally reconstructed the structure of the NAr van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level calculations. The agreement demonstrated the potential application of laser-based Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd