Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/14/10.1063/1.4871205
1.
1. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000);
http://dx.doi.org/10.1021/jp001460h
1.A. H. Zewail, Science 328, 187 (2010).
http://dx.doi.org/10.1126/science.1166135
2.
2. K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007).
http://dx.doi.org/10.1126/science.1135923
3.
3. C. I. Blaga, J. Xu, A. D. Dichiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, Nature (London) 483, 194 (2012);
http://dx.doi.org/10.1038/nature10820
3.M. Y. Ivanov, Nature (London) 483, 161 (2012).
http://dx.doi.org/10.1038/483161a
4.
4. X. B. Wang, H. K. Woo, and L. S. Wang, J. Chem. Phys. 123, 051106 (2005).
http://dx.doi.org/10.1063/1.1998787
5.
5. N. Moazzen-Ahmadi and A. R. W. McKellar, Int. Rev. Phys. Chem. 32, 611 (2013).
http://dx.doi.org/10.1080/0144235X.2013.813799
6.
6. D. Bressanini and G. Morosi, J. Phys. Chem. A 115, 10880 (2011).
http://dx.doi.org/10.1021/jp206612j
7.
7. I. Plesser, Z. Vager, and R. Naaman, Phys. Rev. Lett. 56, 1559 (1986);
http://dx.doi.org/10.1103/PhysRevLett.56.1559
7.Z. Vager, R. Naaman, and E. P. Kanter, Science 244, 426 (1989).
http://dx.doi.org/10.1126/science.244.4903.426
8.
8. R. K. Singh, G. S. Lodha, V. Sharma, I. A. Prajapati, K. P. Subramanian, and B. Bapat, Phys. Rev. A 74, 022708 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.022708
9.
9. Z. D. Pesic, D. Rolles, R. C. Bilodeau, I. Dimitriu, and N. Berrah, Phys. Rev. A 78, 051401R (2008).
http://dx.doi.org/10.1103/PhysRevA.78.051401
10.
10. J. H. Sanderson, T. Nishide, H. Shiromaru, Y. Achiba, and N. Kobayashi, Phys. Rev. A 59, 4817 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.4817
11.
11. N. Neumann, D. Hant, L. P. H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M. S. Schoffler, K. Kreidi, O. Jagutzki, H. Schmidt, and R. Dorner, Phys. Rev. Lett. 104, 103201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.103201
12.
12. M. R. Jana, P. N. Ghosh, B. Bapat, R. K. Kushawaha, K. Saha, I. A. Prajapati, and C. P. Safvan, Phys. Rev. A 84, 062715 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.062715
13.
13. A. Hishikawa, A. Iwamae, and K. Yamanouchi, Phys. Rev. Lett. 83, 1127 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1127
14.
14. I. Bocharova, R. Karimi et al., Phys. Rev. Lett. 107, 063201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.063201
15.
15. C. Wu, C. Wu, D. Song, H. Su, Y. Yang, Z. Wu, X. Liu, H. Liu, M. Li, Y. Deng, Y. Liu, L.-Y. Peng, H. Jiang, and Q. Gong, Phys. Rev. Lett. 110, 103601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.103601
16.
16. F. Legare, K. F. Lee, I. V. Litvinyuk, P. W. Dooley, A. D. Bandrauk, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. A 72, 052717 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.052717
17.
17. E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, Science 317, 1374 (2007).
http://dx.doi.org/10.1126/science.1144920
18.
18. B. Ulrich, A. Vredenborg, A. Malakzadeh, L. Ph. H. Schmidt, T. Havermeier, M. Meckel, K. Cole, M. Smolarski, Z. Chang, T. Jahnke, and R. Dorner, J. Phys. Chem. A 115, 6936. (2011).
http://dx.doi.org/10.1021/jp1121245
19.
19. J. Wu, M. Kuniski, L. Ph. H. Schmidt, T. Jahnke, and R. Dorner, J. Chem. Phys. 137, 104308 (2012).
http://dx.doi.org/10.1063/1.4750980
20.
20. M. Pitzer et al., Science 341, 1096 (2013).
http://dx.doi.org/10.1126/science.1240362
21.
21. K. Yamanouchi, Science 295, 1659 (2002).
http://dx.doi.org/10.1126/science.1068449
22.
22. J. Purnell, E. M. Snyder, S. Wei, and A. W. Castleman, Chem. Phys. Lett. 229, 333 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01145-1
23.
23. C. Cornaggia, Phys. Rev. A 54, R2555 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.R2555
24.
24. K. W. D. Ledingham, D. J. Smith, R. P. Singhal, T. McCanny, P. Graham, H. S. Kilic, W. X. Peng, A. J. Langley, P. F. Taday, and C. Kosmidis, J. Phys. Chem. A 103, 2952 (1999).
http://dx.doi.org/10.1021/jp984359+
25.
25. E. Baldit, S. Saugout, and C. Cornaggia, Phys. Rev. A 71, 021403 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.021403
26.
26. J. P. Brichta, S. J. Walker, R. Helsten, and J. H. Sanderson, J. Phys. B 40, 117 (2007).
http://dx.doi.org/10.1088/0953-4075/40/1/011
27.
27. H. L. Xu, C. Marceau, K. Nakai, T. Okino, S. L. Chin, and K. Yamanouchi, J. Chem. Phys. 133, 071103 (2010).
http://dx.doi.org/10.1063/1.3473931
28.
28. C. Wu, Y. Yang, Z. Wu, B. Chen, H. Dong, X. Liu, Y. Deng, H. Liu, Y. Liu, and Q. Gong, Phys. Chem. Chem. Phys. 13, 18398 (2011).
http://dx.doi.org/10.1039/c1cp21345h
29.
29. K. Patel, P. R. Butler, A. M. Ellis, and M. D. Wheeler, J. Chem. Phys. 119, 909 (2003).
http://dx.doi.org/10.1063/1.1579464
30.
30. C. R. Munteanu, J. L. Cacheiro, and B. Fernández, J. Chem. Phys. 121, 10419 (2004).
http://dx.doi.org/10.1063/1.1809606
31.
31. A. K. Dham, W. J. Meath, J. W. Jechow, and F. R. McCourt, J. Chem. Phys. 124, 034308 (2006).
http://dx.doi.org/10.1063/1.2159001
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4871205 for the description of the experimental method and the experimental data for plotting Fig. 1. [Supplementary Material]
33.
33. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/14/10.1063/1.4871205
Loading
/content/aip/journal/jcp/140/14/10.1063/1.4871205
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/14/10.1063/1.4871205
2014-04-14
2016-12-06

Abstract

We experimentally reconstructed the structure of the NAr van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level calculations. The agreement demonstrated the potential application of laser-based Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/14/1.4871205.html;jsessionid=lVL9lay6fwe5yZHqgS-poE7K.x-aip-live-02?itemId=/content/aip/journal/jcp/140/14/10.1063/1.4871205&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/14/10.1063/1.4871205&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/14/10.1063/1.4871205'
Right1,Right2,Right3,