Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/15/10.1063/1.4871371
1.
1. J. R. Barker and D. M. Golden, Chem. Rev. 103, 4577 (2003).
http://dx.doi.org/10.1021/cr020655d
2.
2. H.-G. Yu and J. S. Francisco, J. Chem. Phys. 128, 244315 (2008).
http://dx.doi.org/10.1063/1.2946696
3.
3. J. S. Francisco, J. T. Muckerman, and H.-G. Yu, Acc. Chem. Res. 43, 1519 (2010).
http://dx.doi.org/10.1021/ar100087v
4.
4. J. A. Miller, R. J. Kee, and C. K. Westbrook, Annu. Rev. Phys. Chem. 41, 345 (1990).
http://dx.doi.org/10.1146/annurev.pc.41.100190.002021
5.
5. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications (Academic Press, San Diego, 2000).
6.
6. R. P. Wayne, Chemistry of Atmosphere (Oxford University Press, Oxford, 2000).
7.
7. A. R. Ravishankara and R. L. Thompson, Chem. Phys. Lett. 99, 377 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80158-4
8.
8. M. J. Frost, P. Sharkey, and I. W. M. Smith, Faraday Discuss. Chem. Soc. 91, 305 (1991).
http://dx.doi.org/10.1039/dc9919100305
9.
9. D. M. Golden, G. P. Smith, A. B. McEwen, C. L. Yu, B. Eitneer, M. Frenklach, G. L. Vaghjiani, A. R. Ravishankara, and F. P. Tully, J. Phys. Chem. A 102, 8598 (1998).
http://dx.doi.org/10.1021/jp982110m
10.
10. M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, J. Chem. Phys. 98, 8341 (1993).
http://dx.doi.org/10.1063/1.464540
11.
11. N. F. Scherer, C. Sipes, R. B. Bernstein, and A. H. Zewail, J. Chem. Phys. 92, 5239 (1990).
http://dx.doi.org/10.1063/1.458531
12.
12. I. Ionov, G. A. Brucker, C. Jacques, L. Valachovic, and C. Wittig, J. Chem. Phys. 99, 6553 (1993).
http://dx.doi.org/10.1063/1.465847
13.
13. J. Li, Y. Wang, B. Jiang, J. Ma, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Chem. Phys. 136, 041103 (2012).
http://dx.doi.org/10.1063/1.3680256
14.
14. J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 221104 (2013).
http://dx.doi.org/10.1063/1.4811109
15.
15. A. M. Clements, R. E. Continetti, and J. S. Francisco, J. Chem. Phys. 117, 6478 (2002).
http://dx.doi.org/10.1063/1.1505439
16.
16. C. J. Johnson and R. E. Continetti, J. Phys. Chem. Lett. 1, 1895 (2010).
http://dx.doi.org/10.1021/jz100621k
17.
17. C. J. Johnson, B. L. J. Poad, B. B. Shen, and R. E. Continetti, J. Chem. Phys. 134, 171106 (2011).
http://dx.doi.org/10.1063/1.3589860
18.
18. J. Ma, J. Li, and H. Guo, Phys. Rev. Lett. 109, 063202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.063202
19.
19. X. Wang and J. M. Bowman, J. Phys. Chem. A 118, 684 (2014).
http://dx.doi.org/10.1021/jp5000655
20.
20. J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012).
http://dx.doi.org/10.1021/jp302278r
21.
21. J. Ma, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 2482 (2012).
http://dx.doi.org/10.1021/jz301064w
22.
22. G. C. Schatz, M. S. Fitzcharles, and L. B. Harding, Faraday Discuss. Chem. Soc. 84, 359 (1987).
http://dx.doi.org/10.1039/dc9878400359
23.
23. K. Kudla, A. Koures, L. B. Harding, and G. C. Schatz, J. Chem. Phys. 96, 7465 (1992).
http://dx.doi.org/10.1063/1.462397
24.
24. K. S. Bradley and G. C. Schatz, J. Chem. Phys. 106, 8464 (1997).
http://dx.doi.org/10.1063/1.473923
25.
25. F. N. Dzegilenko, J. Qi, and J. M. Bowman, Int. J. Quantum Chem. 65, 965 (1997).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<965::AID-QUA59>3.0.CO;2-U
26.
26. H.-G. Yu, J. T. Muckerman, and T. J. Sears, Chem. Phys. Lett. 349, 547 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01238-6
27.
27. M. J. Lakin, D. Troya, G. C. Schatz, and L. B. Harding, J. Chem. Phys. 119, 5848 (2003).
http://dx.doi.org/10.1063/1.1602061
28.
28. R. C. Fortenberry, X. Huang, J. S. Francisco, T. D. Crawford, and T. J. Lee, J. Chem. Phys. 135, 134301 (2011).
http://dx.doi.org/10.1063/1.3643336
29.
29. R. C. Fortenberry, X. Huang, J. S. Francisco, T. D. Crawford, and T. J. Lee, J. Chem. Phys. 135, 214303 (2011).
http://dx.doi.org/10.1063/1.3663615
30.
30. C. J. Johnson, M. E. Harding, B. L. J. Poad, J. F. Stanton, and R. E. Continetti, J. Am. Chem. Soc. 133, 19606 (2011).
http://dx.doi.org/10.1021/ja207724f
31.
31. M. Bruehl and G. C. Schatz, J. Chem. Phys. 89, 770 (1988).
http://dx.doi.org/10.1063/1.455200
32.
32. K. F. Lim and R. G. Gilbert, J. Phys. Chem. 94, 77 (1990).
http://dx.doi.org/10.1021/j100364a012
33.
33. T. Lenzer, K. Luther, J. Troe, R. G. Gilbert, and K. F. Lim, J. Chem. Phys. 103, 626 (1995).
http://dx.doi.org/10.1063/1.470096
34.
34. Z. Li, R. Sansom, S. Bonella, D. F. Coker, and A. S. Mullin, J. Phys. Chem. A 109, 7657 (2005).
http://dx.doi.org/10.1021/jp0525336
35.
35. A. Lombardi, N. Faginas-Lago, L. Pacifici, and A. Costantini, J. Phys. Chem. A 117, 11430 (2013).
http://dx.doi.org/10.1021/jp408522m
36.
36. R. Conte, P. L. Houston, and J. M. Bowman, J. Phys. Chem. A 117, 14028 (2013).
http://dx.doi.org/10.1021/jp410315r
37.
37. A. W. Jasper and J. A. Miller, J. Phys. Chem. A 113, 5612 (2009).
http://dx.doi.org/10.1021/jp900802f
38.
38. A. W. Jasper and J. A. Miller, J. Phys. Chem. A 115, 6438 (2011).
http://dx.doi.org/10.1021/jp200048n
39.
39. A. W. Jasper, J. A. Miller, and S. J. Klippenstein, J. Phys. Chem. A 117, 12243 (2013).
http://dx.doi.org/10.1021/jp409086w
40.
40. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
41.
41. B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
http://dx.doi.org/10.1080/01442350903234923
42.
42. Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26 (2010).
http://dx.doi.org/10.1021/ct9004917
43.
43. A. J. C. Varandas and S. P. J. Rodrigues, J. Chem. Phys. 106, 9647 (1997).
http://dx.doi.org/10.1063/1.473864
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4871371 for values of Pairwise-18 parameters and contour plots. [Supplementary Material]
45.
45.Mathematica, Version 8.0, Wolfram Research, Inc., Champaign, IL, 2010.
46.
46. C. D. Clary, R. G. Gilbert, V. Bernshtein, and I. Oref, Faraday Discuss. 102, 423 (1995).
http://dx.doi.org/10.1039/fd9950200423
47.
47. Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011).
http://dx.doi.org/10.1063/1.3554905
48.
48. J. S. Mancini and J. M. Bowman, “A New Many-Body Potential Energy Surface for HCl Clusters and Its Application to Anharmonic Spectroscopy and Vibration–Vibration Energy Transfer in the HCl Trimer,” J. Phys. Chem. A (published online) (2014).
http://dx.doi.org/10.1021/jp412264t
49.
49. J. S. Mancini, A. K. Samanta, J. M. Bowman, and H. Reisler, “Experiment and Theory Elucidate the Multichannel Predissociation Dynamics of the HCl Trimer: Breaking Up Is Hard To Do,” J. Phys. Chem. A (published online) (2014).
http://dx.doi.org/10.1021/jp5015753
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/15/10.1063/1.4871371
Loading
/content/aip/journal/jcp/140/15/10.1063/1.4871371
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/15/10.1063/1.4871371
2014-04-16
2016-12-10

Abstract

A full-dimensional, global potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm−1 for fitted interaction energies up to roughly 12 000 cm−1. Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm−1. The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm−1. All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/15/1.4871371.html;jsessionid=E3H47G3aA8Z91xPN-etjTcTR.x-aip-live-03?itemId=/content/aip/journal/jcp/140/15/10.1063/1.4871371&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/15/10.1063/1.4871371&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/15/10.1063/1.4871371'
Right1,Right2,Right3,