Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/15/10.1063/1.4871476
1.
1. E. A. Zheligovskaya and G. G. Malenkov, Russ. Chem. Rev. 75, 57 (2006).
http://dx.doi.org/10.1070/RC2006v075n01ABEH001184
2.
2. C. G. Salzmann, P. G. Radaelli, B. Slater, and J. L. Finney, Phys. Chem. Chem. Phys. 13, 18468 (2011).
http://dx.doi.org/10.1039/c1cp21712g
3.
3. T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutiérrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson et al., Rev. Mod. Phys. 84, 885 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.885
4.
4. C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neuefeind, B. Tomberli, and P. A. Egelstaff, Science 297, 1320 (2002).
http://dx.doi.org/10.1126/science.1074178
5.
5. T. Loerting and N. Giovambattista, J. Phys.: Condens. Matter 18, R919 (2006).
http://dx.doi.org/10.1088/0953-8984/18/50/R01
6.
6. T. Loerting, K. Winkel, M. Seidl, M. Bauer, C. Mitterdorfer, P. H. Handle, C. G. Salzmann, E. Mayer, J. L. Finney, and D. T. Bowron, Phys. Chem. Chem. Phys. 13, 8783 (2011).
http://dx.doi.org/10.1039/c0cp02600j
7.
7. E. F. Burton and W. F. Oliver, Proc. R. Soc. London, Ser. A 153, 166 (1935).
http://dx.doi.org/10.1098/rspa.1935.0229
8.
8. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).
http://dx.doi.org/10.1038/310393a0
9.
9. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 3, 5355 (2001).
http://dx.doi.org/10.1039/b108676f
10.
10. I. Brovchenko and A. Oleinikova, ChemPhysChem 9, 2660 (2008).
http://dx.doi.org/10.1002/cphc.200800639
11.
11. H. E. Stanley, P. Kumar, G. Franzese, L. Xu, Z. Yan, M. G. Mazza, S. V. Buldyrev, S. H. Chen, and F. Mallamace, Eur. Phys. J.: Spec. Top. 161, 1 (2008).
http://dx.doi.org/10.1140/epjst/e2008-00746-3
12.
12. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
13.
13. D. D. Klug, O. Mishima, and E. Whalley, J. Chem. Phys. 86, 5323 (1987).
http://dx.doi.org/10.1063/1.452557
14.
14. Y. Suzuki, Y. Takasaki, Y. Tominaga, and O. Mishima, Chem. Phys. Lett. 319, 81 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00126-3
15.
15. T. C. Sivakumar, D. Schuh, M. G. Sceats, and S. A. Rice, Chem. Phys. Lett. 48, 212 (1977).
http://dx.doi.org/10.1016/0009-2614(77)80302-3
16.
16. M. S. Bergren, D. Schuh, M. G. Sceats, and S. A. Rice, J. Chem. Phys. 69, 3477 (1978).
http://dx.doi.org/10.1063/1.437080
17.
17. J. A. Ripmeester, C. I. Ratcliffe, and D. D. Klug, J. Chem. Phys. 96, 8503 (1992).
http://dx.doi.org/10.1063/1.462302
18.
18. A. Bizid, L. Bosio, A. Defrain, and M. Oumezzine, J. Chem. Phys. 87, 2225 (1987).
http://dx.doi.org/10.1063/1.453149
19.
19. T. Loerting, W. Schustereder, K. Winkel, C. G. Salzmann, I. Kohl, and E. Mayer, Phys. Rev. Lett. 96, 025702 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025702
20.
20. J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Phys. Rev. Lett. 89, 205503 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.205503
21.
21. J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Phys. Rev. Lett. 88, 225503 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.225503
22.
22. K. Winkel, D. T. Bowron, T. Loerting, E. Mayer, and J. L. Finney, J. Chem. Phys. 130, 204502 (2009).
http://dx.doi.org/10.1063/1.3139007
23.
23. A. Shalit, F. Perakis, and P. Hamm, J. Phys. Chem. B. 117, 15512 (2013).
http://dx.doi.org/10.1021/jp4053743
24.
24. J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, J. Chem. Phys. 121, 12431 (2004).
http://dx.doi.org/10.1063/1.1818107
25.
25. J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
http://dx.doi.org/10.1073/pnas.0505125102
26.
26. S. Yeremenko, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 369, 107 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)02001-8
27.
27. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
http://dx.doi.org/10.1038/nature03383
28.
28. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011).
29.
29. G. M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, and J. C. Leicknam, Phys. Rev. Lett. 82, 1068 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1068
30.
30. S. A. Corcelli, C. P. Lawrence, and J. L. Skinner, J. Chem. Phys. 120, 8107 (2004).
http://dx.doi.org/10.1063/1.1683072
31.
31. K. B. Moller, R. Rey, and J. T. Hynes, J. Phys. Chem. A 108, 1275 (2004).
http://dx.doi.org/10.1021/jp035935r
32.
32. J. D. Smith, C. D. Cappa, K. R. Wilson, R. C. Cohen, P. L. Geissler, and R. J. Saykally, Proc. Natl. Acad. Sci. U.S.A. 102, 14171 (2005).
http://dx.doi.org/10.1073/pnas.0506899102
33.
33. P. Jenniskens and D. Blake, Science 265, 753 (1994).
http://dx.doi.org/10.1126/science.11539186
34.
34. P. Jenniskens, D. F. Blake, M. A. Wilson, and A. Pohorille, Astrophys. J. 455, 389 (1995).
http://dx.doi.org/10.1086/176585
35.
35. J. Helbing and P. Hamm, J. Opt. Soc. Am. B 28, 171 (2011).
http://dx.doi.org/10.1364/JOSAB.28.000171
36.
36. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, Opt. Express 18, 27067 (2010).
http://dx.doi.org/10.1364/OE.18.027067
37.
37. C. J. Tainter, L. Shi, and J. L. Skinner, J. Chem. Phys. 140, 134503 (2014).
http://dx.doi.org/10.1063/1.4869293
38.
38. P. V. Hobbs, Ice Physics (Oxford University Press, Oxford, 1974).
39.
39. L. Shi and J. L. Skinner, J. Phys. Chem. B 117, 15536 (2013).
http://dx.doi.org/10.1021/jp405860u
40.
40. R. Rey, K. Møller, and J. T. Hynes, J. Phys. Chem. A 106, 11993 (2002).
http://dx.doi.org/10.1021/jp026419o
41.
41. J. C. Deàk, S. T. Rhea, L. K. Iwaki, and D. D. Dlott, J. Phys. Chem. A 104, 4866 (2000).
http://dx.doi.org/10.1021/jp994492h
42.
42. Z. Wang, A. Pakoulev, Y. Pang, and D. D. Dlott, J. Phys. Chem. A 108, 9054 (2004).
http://dx.doi.org/10.1021/jp048545t
43.
43. R. Rey, F. Ingrosso, T. Elsaesser, and J. T. Hynes, J. Phys. Chem. A 113, 8949 (2009).
http://dx.doi.org/10.1021/jp9036342
44.
44. W. J. Smit and H. J. Bakker, J. Chem. Phys. 139, 204504 (2013).
http://dx.doi.org/10.1063/1.4833596
45.
45. R. Laenen, K. Simeonidis, and A. Laubereau, J. Phys. Chem. B 106, 408 (2002).
http://dx.doi.org/10.1021/jp011047p
46.
46. H. J. Bakker and H. K. Nienhuys, Science 297, 587 (2002).
http://dx.doi.org/10.1126/science.1073298
47.
47. A. M. Dokter and H. J. Bakker, J. Chem. Phys. 128, 024502 (2008).
http://dx.doi.org/10.1063/1.2820765
48.
48. F. Perakis, S. Widmer, and P. Hamm, J. Chem. Phys. 134, 204505 (2011).
http://dx.doi.org/10.1063/1.3592561
49.
49. F. Perakis, J. Borek, and P. Hamm, J. Chem. Phys. 139, 014501 (2013).
http://dx.doi.org/10.1063/1.4812216
50.
50. S. Woutersen, U. Emmerichs, H. K. Nienhuys, and H. J. Bakker, Phys. Rev. Lett. 81, 1106 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1106
51.
51. C. A. Tulk, D. D. Klug, R. Branderhorst, P. Sharpe, and J. A. Ripmeester, J. Chem. Phys. 109, 8478 (1998).
http://dx.doi.org/10.1063/1.477512
52.
52. D. D. Klug, C. A. Tulk, E. C. Svensson, and C. K. Loong, Phys. Rev. Lett. 83, 2584 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2584
53.
53. J. J. Shephard, J. S. O. Evans, and C. G. Salzmann, J. Phys. Chem. Lett. 4, 3672 (2013).
http://dx.doi.org/10.1021/jz4020103
54.
54.See supplementary material http://dx.doi.org/10.1063/1.4871476 for temperature dependent IR spectra of HDA and LDA. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/15/10.1063/1.4871476
Loading
/content/aip/journal/jcp/140/15/10.1063/1.4871476
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/15/10.1063/1.4871476
2014-04-17
2016-12-06

Abstract

We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1–2 transition of the isolated OD stretch vibration of HDO in HO exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures – in particular the presence of interstitial waters in HDA ice – that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/15/1.4871476.html;jsessionid=hDHn-Y_qXtSm2qNqL_iPrhhp.x-aip-live-03?itemId=/content/aip/journal/jcp/140/15/10.1063/1.4871476&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/15/10.1063/1.4871476&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/15/10.1063/1.4871476'
Right1,Right2,Right3,