Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/16/10.1063/1.4873167
1.
1. P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
2.
2. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
3.
3. O. Mishima and H. E. Stanley, Nature (London) 392, 164 (1998).
http://dx.doi.org/10.1038/32386
4.
4. O. Mishima and H. E. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
5.
5. H. Tanaka, Europhys. Lett. 50, 340 (2000).
http://dx.doi.org/10.1209/epl/i2000-00276-4
6.
6. O. Mishima, Proc. Jpn. Acad. Ser. B 86, 165 (2010).
http://dx.doi.org/10.2183/pjab.86.165
7.
7. V. Holten and M. A. Anisimov, Sci. Rep. 2, 713 (2012).
http://dx.doi.org/10.1038/srep00713
8.
8. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
9.
9. D. T. Limmer and D. Chandler, J. Chem. Phys. 138, 214504 (2013).
http://dx.doi.org/10.1063/1.4807479
10.
10. J. Palmer, R. Car, and P. Debenedetti, Faraday Discuss. 167, 77 (2013).
http://dx.doi.org/10.1039/c3fd00074e
11.
11. S. D. Overduin and G. N. Patey, J. Chem. Phys. 138, 184502 (2013).
http://dx.doi.org/10.1063/1.4803868
12.
12. T. Yagasaki, M. Matsumoto, and H. Tanaka, Phys. Rev. E 89, 020301(R) (2014).
http://dx.doi.org/10.1103/PhysRevE.89.020301
13.
13. V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501 (2013).
http://dx.doi.org/10.1063/1.4802992
14.
14. V. Holten, J. Palmer, P. H. Poole, P. G. Debenedetti, and M. A. Anisimov, J. Chem. Phys. 140, 104502 (2014).
http://dx.doi.org/10.1063/1.4867287
15.
15. P. Kumar and H. E. Stanley, J. Phys. Chem. B 115, 14269 (2011).
http://dx.doi.org/10.1021/jp2051867
16.
16. M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellman, and E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012).
http://dx.doi.org/10.1063/1.4738955
17.
17. J. W. Biddle, V. Holten, J. V. Sengers, and M. A. Anisimov, Phys. Rev. E 87, 042302 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042302
18.
18. P. W. Bridgman, Proc. Natl. Acad. Sci. USA 9, 341 (1923).
http://dx.doi.org/10.1073/pnas.9.10.341
19.
19. R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, Wiley International ed. (John Wiley and Sons, 2007).
20.
20. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
21.
21. C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
22.
22. J. L. F. Abascal and C. Vega, J. Chem. Phys. 134, 186101 (2011).
http://dx.doi.org/10.1063/1.3585676
23.
23. I. Shvab and R. J. Sadus, J. Chem. Phys. 139, 194505 (2013).
http://dx.doi.org/10.1063/1.4832381
24.
24. K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Phys. Chem. Chem. Phys. 13, 19918 (2011).
http://dx.doi.org/10.1039/c1cp22076d
25.
25. J. L. F. Abascal and C. Vega, J. Chem. Phys. 133, 234502 (2010).
http://dx.doi.org/10.1063/1.3506860
26.
26. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
27.
27. S. Nosé and M. L. Klein, Mol. Phys. 50, 1055 (1983).
http://dx.doi.org/10.1080/00268978300102851
28.
28. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
29.
29. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
30.
30. D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen, and H. J. C. Berendsen, Gromacs User Manual version 4.5.6, see www.gromacs.org, 2010.
31.
31. T. Sumi and H. Sekino, R. Soc. Chem. Adv. 3, 12743 (2013).
http://dx.doi.org/10.1039/C3RA41320A
32.
32. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
33.
33. R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
http://dx.doi.org/10.1146/annurev.pc.16.100165.000435
34.
34. T. W. Sirk, S. Moore, and E. F. Brown, J. Chem. Phys. 138, 064505 (2013).
http://dx.doi.org/10.1063/1.4789961
35.
35. F. Bresme, B. Kafskjold, and I. Wold, J. Phys. Chem. 100, 1879 (1996).
http://dx.doi.org/10.1021/jp9512321
36.
36. D. Rozmanov and P. Kusalik, J. Chem. Phys. 136, 044507 (2012).
http://dx.doi.org/10.1063/1.3677196
37.
37. O. Benchikh, D. Fournier, and A. C. Boccara, J. Phys. (Paris) 46, 727 (1985).
http://dx.doi.org/10.1051/jphys:01985004605072700
38.
38. A. Taschin, P. Bartolini, R. Eramo, and R. Torre, Phys. Rev. E 74, 031502 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.031502
39.
39. F. Römer, A. Lervik, and F. Bresme, J. Chem. Phys. 137, 074503 (2012).
http://dx.doi.org/10.1063/1.4739855
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/16/10.1063/1.4873167
Loading
/content/aip/journal/jcp/140/16/10.1063/1.4873167
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/16/10.1063/1.4873167
2014-04-25
2016-09-28

Abstract

We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/16/1.4873167.html;jsessionid=P-X_ujhd0wd8Ho6z2JO3-Uwo.x-aip-live-02?itemId=/content/aip/journal/jcp/140/16/10.1063/1.4873167&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/16/10.1063/1.4873167&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/16/10.1063/1.4873167'
Right1,Right2,Right3,