Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/17/10.1063/1.4871873
1.
1. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC Press, Boca Raton, FL, 2008).
2.
2. J. B. Klauda and S. I. Sandler, Energy Fuels 19, 459 (2005).
http://dx.doi.org/10.1021/ef049798o
3.
3. M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Science 326, 1095 (2009).
http://dx.doi.org/10.1126/science.1174010
4.
4. M. R. Walsh, G. T. Beckham, C. A. Koh, E. D. Sloan, D. T. Wu, and A. K. Sum, J. Phys. Chem. C 115, 21241 (2011).
http://dx.doi.org/10.1021/jp206483q
5.
5. L. C. Jacobson, W. Hujo, and V. Molinero, J. Am. Chem. Soc. 132, 11806 (2010).
http://dx.doi.org/10.1021/ja1051445
6.
6. R. Radhakrishnan and B. L. Trout, J. Chem. Phys. 117, 1786 (2002).
http://dx.doi.org/10.1063/1.1485962
7.
7. C. Moon, R. W. Hawtin, and P. M. Rodger, Faraday Discuss. 136, 367 (2007).
http://dx.doi.org/10.1039/b618194p
8.
8. K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
9.
9. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
10.
10. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
11.
11. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
12.
12. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
13.
13. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
14.
14. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
15.
15. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
16.
16. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
17.
17. B. Santra, J. Klimeš, A. Tkatchenko, D. Alfè, B. Slater, A. Michaelides, R. Car, and M. Scheffler, J. Chem. Phys. 139, 154702 (2013).
http://dx.doi.org/10.1063/1.4824481
18.
18. B. C. Knott, V. Molinero, M. F. Doherty, and B. Peters, J. Am. Chem. Soc. 134, 19544 (2012).
http://dx.doi.org/10.1021/ja309117d
19.
19. A. Lenz and L. Ojamäe, J. Phys. Chem. A 115, 6169 (2011).
http://dx.doi.org/10.1021/jp111328v
20.
20. G. Román-Pérez, M. Moaied, J. M. Soler, and F. Yndurain, Phys. Rev. Lett. 105, 145901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.145901
21.
21. Q. Li, B. Kolb, G. Román-Pérez, J. M. Soler, F. Yndurain, L. Kong, D. C. Langreth, and T. Thonhauser, Phys. Rev. B 84, 153103 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.153103
22.
22. N. D. Drummond and R. J. Needs, Phys. Rev. B 73, 024107 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024107
23.
23. L. Shulenburger and T. R. Mattsson, Phys. Rev. B 88, 245117 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245117
24.
24. W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.33
25.
25. R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ríos, J. Phys.: Condens. Matter 22, 023201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/023201
26.
26. D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161101
27.
27. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
28.
28. M. J. Gillan, F. R. Manby, M. D. Towler, and D. Alfè, J. Chem. Phys. 136, 244105 (2012).
http://dx.doi.org/10.1063/1.4730035
29.
29. I. G. Gurtubay and R. J. Needs, J. Chem. Phys. 127, 124306 (2007).
http://dx.doi.org/10.1063/1.2770711
30.
30. F. F. Wang, M. J. Deible, and K. D. Jordan, J. Phys. Chem. A 117, 7606 (2013).
http://dx.doi.org/10.1021/jp404541c
31.
31. M. Dubecký, P. Jurečka, R. Derian, P. Hobza, M. Otyepka, and L. Mitas, J. Chem. Theory Comput. 9, 4287 (2013).
http://dx.doi.org/10.1021/ct4006739
32.
32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
33.
33. J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, Phys. Rev. Lett. 106, 026101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.026101
34.
34. F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimeš, J. Harl, and G. Kresse, Phys. Rev. B 84, 201401 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.201401
35.
35. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
36.
36. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
37.
37. J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, J. Chem. Phys. 122, 234511 (2005).
http://dx.doi.org/10.1063/1.1931662
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4871873 for details of the force fields investigated and results of ice . [Supplementary Material]
39.
39. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
40.
40. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
41.
41. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
42.
42.For the calculations, VASP 5.3.3 was used.
43.
43. G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.096102
44.
44. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
45.
45. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
46.
46. N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. B 70, 235119 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235119
47.
47. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
48.
48. J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).
http://dx.doi.org/10.1063/1.1888569
49.
49. J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005).
http://dx.doi.org/10.1063/1.1829049
50.
50. J. Ma, D. Alfè, A. Michaelides, and E. Wang, J. Chem. Phys. 130, 154303 (2009).
http://dx.doi.org/10.1063/1.3111035
51.
51. J. Ma, A. Michaelides, and D. Alfè, J. Chem. Phys. 134, 134701 (2011).
http://dx.doi.org/10.1063/1.3569134
52.
52. S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.076404
53.
53. N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes, Phys. Rev. B 78, 125106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125106
54.
54. A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. Foulkes, Y. Wang, and M. Y. Chou, Phys. Rev. B 55, R4851 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R4851
55.
55. L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, Phys. Rev. B 53, 1814 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1814
56.
56. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
57.
57. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
58.
58. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
59.
59. R. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).
http://dx.doi.org/10.1137/0916069
60.
60. C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, ACM Trans. Math. Softw. 23, 550 (1997).
http://dx.doi.org/10.1145/279232.279236
61.
61. S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).
http://dx.doi.org/10.1002/jcc.540130805
62.
62. I.-M. Chou, A. Sharma, R. C. Burruss, J. Shu, H.-K. Mao, R. J. Hemley, A. F. Goncharov, L. A. Stern, and S. H. Kirby, Proc. Natl. Acad. Sci. U.S.A. 97, 13484 (2000).
http://dx.doi.org/10.1073/pnas.250466497
63.
63. H. Hirai, T. Tanaka, T. Kawamura, Y. Yamamoto, and T. Yagi, J. Phys. Chem. Solids 65, 1555 (2004).
http://dx.doi.org/10.1016/j.jpcs.2003.12.018
64.
64. F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
65.
65. C. L. Fu and K. M. Ho, Phys. Rev. B 28, 5480 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.5480
66.
66. D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and B. M. Powell, Nature (London) 311, 142 (1984).
http://dx.doi.org/10.1038/311142a0
67.
67. C. Gutt, B. Asmussen, W. Press, M. R. Johnson, Y. P. Handa, and J. S. Tse, J. Chem. Phys. 113, 4713 (2000).
http://dx.doi.org/10.1063/1.1288789
68.
68. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, Phys. Rev. B 84, 033402 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033402
69.
69. G. Graziano, J. Klimeš, F. Fernandez-Alonso, and A. Michaelides, J. Phys.: Condens. Matter 24, 424216 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424216
70.
70. Y. P. Handa, J. Chem. Thermodyn. 18, 915 (1986).
http://dx.doi.org/10.1016/0021-9614(86)90149-7
71.
71.As the experimental number is a standard enthalpy of dissociation we should not expect quantitative agreement with the DMC dissociation energy, which is a total energy difference. Aside from the temperature/pressure effects present in experiment, there is also the issue of non-stoichiometry (the experimental data of Handa70 was obtained for a methane occupancy of water cages of ca. 96%), which means that configurational entropy is likely to be important for the experimental dissociation enthalpy. This comparison is made simply to show that the number obtained with DMC is reasonable. In fact, analysis of numerous experimental data sets using the Clapeyron equation yields an enthalpy of dissociation of 157 ± 6 meV/CH4 at 150 K and 0.0564 bar.81 This is arguably a better comparison to the zero temperature/pressure DMC calculations and indeed improves agreement, but one should nevertheless exercise caution when comparing a calculated dissociation energy to an experimental enthalpy.
72.
72. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
73.
73. B. Guillot, J. Mol. Liq. 101, 219 (2002).
http://dx.doi.org/10.1016/S0167-7322(02)00094-6
74.
74. J. L. F. Abascal, R. G. Fernández, L. G. MacDowell, E. Sanz, and C. Vega, J. Mol. Liq. 136, 214 (2007).
http://dx.doi.org/10.1016/j.molliq.2007.08.025
75.
75. M. M. Conde and C. Vega, J. Chem. Phys. 133, 064507 (2010).
http://dx.doi.org/10.1063/1.3466751
76.
76. H. Jiang, K. D. Jordan, and C. E. Taylor, J. Phys. Chem. B 111, 6486 (2007).
http://dx.doi.org/10.1021/jp068505k
77.
77. M. J. Deible, O. Tuguldur, and K. D. Jordan, “Theoretical study of the binding energy of a methane molecule in a (H2O)20 dodecahedral cage,” J. Phys. Chem. B (to be published).
http://dx.doi.org/10.1021/jp501592h
78.
78. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
79.
79. D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 138, 221102 (2013).
http://dx.doi.org/10.1063/1.4810882
80.
80. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.136403
81.
81. G. K. Anderson, J. Chem. Thermodyn. 36, 1119 (2004).
http://dx.doi.org/10.1016/j.jct.2004.07.005
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/17/10.1063/1.4871873
Loading
/content/aip/journal/jcp/140/17/10.1063/1.4871873
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/17/10.1063/1.4871873
2014-05-01
2016-09-26

Abstract

High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice , we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/17/1.4871873.html;jsessionid=uyuQbN6vHRyf1knBrqejNAMQ.x-aip-live-03?itemId=/content/aip/journal/jcp/140/17/10.1063/1.4871873&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/17/10.1063/1.4871873&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/17/10.1063/1.4871873'
Right1,Right2,Right3,