Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/17/10.1063/1.4873585
1.
1. D. J. Fish, M. T. Horne, G. P. Brewood, J. P. Goodarzi, S. Alemayehu, A. Bhandiwad, R. P. Searles, and A. S. Benight, Nucl. Acids Res. 35, 7197 (2007).
http://dx.doi.org/10.1093/nar/gkm865
2.
2. M. T. Horne, D. J. Fish, and A. S. Benight, Biophys. J. 91, 4133 (2006).
http://dx.doi.org/10.1529/biophysj.106.090662
3.
3. W. W. Hadiwikarta, J.-C. Walter, J. Hooyberghs, and E. Carlon, Nucl. Acids Res. 40, e138 (2012).
http://dx.doi.org/10.1093/nar/gks475
4.
4. T. V. Chalikian, J. Völker, G. E. Plum, and K. J. Breslauer, Proc. Natl. Acad. Sci. U.S.A. 96, 7853 (1999).
http://dx.doi.org/10.1073/pnas.96.14.7853
5.
5. J. SantaLucia Jr. and D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004).
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141800
6.
6. J. SantaLucia, Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).
http://dx.doi.org/10.1073/pnas.95.4.1460
7.
7. K. J. Breslauer, Protocols for Oligonucleotide Conjugates (Springer, 1994), pp. 347372.
8.
8. K. J. Breslauer, R. Frank, H. Blöcker, and L. A. Marky, Proc. Natl. Acad. Sci. U.S.A. 83, 3746 (1986).
http://dx.doi.org/10.1073/pnas.83.11.3746
9.
9. T. Garel and H. Orland, Biopolymers 75, 453 (2004).
http://dx.doi.org/10.1002/bip.20140
10.
10. M. E. Craig, D. M. Crothers, and P. Doty, J. Mol. Biol. 62, 383 (1971).
http://dx.doi.org/10.1016/0022-2836(71)90434-7
11.
11. K. J. Breslauer and M. Bina-Stein, Biophys. Chem. 7, 211 (1977).
http://dx.doi.org/10.1016/0301-4622(77)87024-5
12.
12. D. Pörschke and M. Eigen, J. Mol. Biol. 62, 361 (1971).
http://dx.doi.org/10.1016/0022-2836(71)90433-5
13.
13. J.-Y. Wang and K. Drlica, Math. Biosci. 183, 37 (2003).
http://dx.doi.org/10.1016/S0025-5564(02)00221-3
14.
14. M. W. Pfaffl, Nucl. Acids Res. 29, e45 (2001).
http://dx.doi.org/10.1093/nar/29.9.e45
15.
15. Y. Gao, L. K. Wolf, and R. M. Georgiadis, Nucl. Acids Res. 34, 3370 (2006).
http://dx.doi.org/10.1093/nar/gkl422
16.
16. V. A. Bloomfield, D. M. Crothers, and I. Tinoco, Nucleic Acids: Structures, Properties, and Functions (University Science Books, 2000).
17.
17. C. Chen, W. Wang, Z. Wang, F. Wei, and X. S. Zhao, Nucl. Acids Res. 35, 2875 (2007).
http://dx.doi.org/10.1093/nar/gkm177
18.
18. G. Bonnet, O. Krichevsky, and A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 95, 8602 (1998).
http://dx.doi.org/10.1073/pnas.95.15.8602
19.
19. J. G. Wetmur and N. Davidson, J. Mol. Biol. 31, 349 (1968).
http://dx.doi.org/10.1016/0022-2836(68)90414-2
20.
20. J. Applequist and V. Damle, J. Am. Chem. Soc. 87, 1450 (1965).
http://dx.doi.org/10.1021/ja01085a007
21.
21. M. Schwarz Jr. and D. Poland, J. Chem. Phys. 63, 557 (1975).
http://dx.doi.org/10.1063/1.431086
22.
22. M. Schwarz Jr. and D. Poland, J. Chem. Phys. 65, 2620 (1976).
http://dx.doi.org/10.1063/1.433460
23.
23. V. Anshelevich, A. Vologodskii, A. Lukashin, and M. Frank-Kamenetskii, Biopolymers 23, 39 (1984).
http://dx.doi.org/10.1002/bip.360230105
24.
24. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms (McGraw-Hill, New York, 1995).
25.
25. R. T. Koehler and N. Peyret, Bioinformatics 21, 3333 (2005).
http://dx.doi.org/10.1093/bioinformatics/bti530
26.
26. J. Smith, H. Van Ness, and M. Abbott, Introduction to Chemical Engineering Thermodynamics (McGraw-Hill, New York, 2005).
27.
27. D. Jost and R. Everaers, Biophys. J. 96, 1056 (2009).
http://dx.doi.org/10.1529/biophysj.108.134031
28.
28. A. Suyama and A. Wada, Biopolymers 23, 409 (1984).
http://dx.doi.org/10.1002/bip.360230304
29.
29. F. Manyanga, M. T. Horne, G. P. Brewood, D. J. Fish, R. Dickman, and A. S. Benight, J. Phys. Chem. B 113, 2556 (2009).
http://dx.doi.org/10.1021/jp809541m
30.
30. T. Xia, J. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox, and D. H. Turner, Biochemistry 37, 14719 (1998).
http://dx.doi.org/10.1021/bi9809425
31.
31.Some cancellation of errors induced by the non-unique assignment of NN free energies to individual base pair hybridization events can occur in kinetic models for DNA hybridization that allow hybridization to nucleate at any position along the sequence and assign free energy changes in a consistent fashion.
32.
32. R. L. Baldwin, Molecular Associations in Biology (Academic Press, New York, 1968).
33.
33. C. W. Gardiner, Handbook of Stochastic Methods (Springer, New York, 2004).
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4873585 for the derivation of relaxation time under steady state assumption, stability constant of AU polymers and the reaction schemes and state equations of simplex hybridization. [Supplementary Material]
35.
35. A. P. Williams, C. E. Longfellow, S. M. Freier, R. Kierzek, and D. H. Turner, Biochemistry 28, 4283 (1989).
http://dx.doi.org/10.1021/bi00436a025
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/17/10.1063/1.4873585
Loading
/content/aip/journal/jcp/140/17/10.1063/1.4873585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/17/10.1063/1.4873585
2014-05-07
2016-09-28

Abstract

A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/17/1.4873585.html;jsessionid=8sc6l-sEH65gdLF3ei3D9tD2.x-aip-live-06?itemId=/content/aip/journal/jcp/140/17/10.1063/1.4873585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/17/10.1063/1.4873585&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/17/10.1063/1.4873585'
Right1,Right2,Right3,