Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/17/10.1063/1.4874158
1.
1. A. F. Goncharov and R. J. Hemley, Chem. Soc. Rev. 35, 899 (2006).
http://dx.doi.org/10.1039/b607523c
2.
2. M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, Science 319, 1506 (2008).
http://dx.doi.org/10.1126/science.1153282
3.
3. X.-J. Chen, J.-L. Wang, V. V. Struzhkin, H.-k. Mao, R. J. Hemley, and H.-Q. Lin, Phys. Rev. Lett. 101, 077002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077002
4.
4. M. Martinez-Canales, A. R. Oganov, Y. Ma, Y. Yan, A. O. Lyakhov, and A. Bergara, Phys. Rev. Lett. 102, 087005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.087005
5.
5. J. S. Tse, Y. Yao, and K. Tanaka, Phys. Rev. Lett. 98, 117004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.117004
6.
6. G. Gao et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1317 (2010).
http://dx.doi.org/10.1073/pnas.0908342107
7.
7. G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma, and G. Zou, Phys. Rev. Lett. 101, 107002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107002
8.
8. Y. Li, G. Gao, Y. Xie, Y. Ma, T. Cui, and G. Zou, Proc. Natl. Acad. Sci. U.S.A. 107, 15708 (2010).
http://dx.doi.org/10.1073/pnas.1007354107
9.
9. H. Shimizu, Y. Nakamichi, and S. Sasaki, J. Chem. Phys. 95, 2036 (1991).
http://dx.doi.org/10.1063/1.461002
10.
10. S. Endo, N. Ichimiya, K. Koto, S. Sasaki, and H. Shimizu, Phys. Rev. B 50, 5865 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5865
11.
11. S. Endo, A. Honda, S. Sasaki, H. Shimizu, O. Shimomura, and T. Kikegawa, Phys. Rev. B 54, R717 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R717
12.
12. M. Sakashita, H. Yamawaki, H. Fujihisa, K. Aoki, S. Sasaki, and H. Shimizu, Phys. Rev. Lett. 79, 1082 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1082
13.
13. M. Collins, C. Ratcliffe, and J. Ripmeester, J. Phys. Chem. 93, 7495 (1989).
http://dx.doi.org/10.1021/j100358a046
14.
14. J. K. Cockcroft and A. N. Fitch, Z. Kristallogr. 193, 1 (1990).
http://dx.doi.org/10.1524/zkri.1990.193.1-2.1
15.
15. H. Fujihisa, H. Yamawaki, M. Sakashita, K. Aoki, S. Sasaki, and H. Shimizu, Phys. Rev. B 57, 2651 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.2651
16.
16. S. Endo, A. Honda, K. Koto, O. Shimomura, T. Kikegawa, and N. Hamaya, Phys. Rev. B 57, 5699 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.5699
17.
17. R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 83, 2218 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2218
18.
18. T. Ikeda, Phys. Rev. B 64, 104103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.104103
19.
19. L. Wang, F. Tian, W. Feng, C. Chen, Z. He, Y. Ma, T. Cui, B. Liu, and G. Zou, J. Chem. Phys. 132, 164506 (2010).
http://dx.doi.org/10.1063/1.3392673
20.
20. R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1254
21.
21. C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. Lett. 110, 245701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.245701
22.
22. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.008
23.
23. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094116
24.
24. J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.015503
25.
25. L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Phys. Rev. Lett. 106, 145501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.145501
26.
26. Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Phys. Rev. Lett. 110, 136403 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.136403
27.
27. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
28.
28. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
29.
29. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
30.
30. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
31.
31. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
32.
32. S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A. Pasquarello, and S. Baroni, Z. Kristallogr. 220, 574 (2005).
http://dx.doi.org/10.1524/zkri.220.5.574.65062
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4874158 for the calculated structure parameters, electron localization functions, phonon dispersion curves, and electronic band structures. [Supplementary Material]
34.
34. T. Kume, Y. Fukaya, S. Sasaki, and H. Shimizu, Rev. Sci. Instrum. 73, 2355 (2002).
http://dx.doi.org/10.1063/1.1480455
35.
35. A. Simon, Angew. Chem., Int. Ed. 36, 1788 (1997).
http://dx.doi.org/10.1002/anie.199717881
36.
36. P. B. Allen, Phys. Rev. B 6, 2577 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.2577
37.
37. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.905
38.
38. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.187002
39.
39. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).
http://dx.doi.org/10.1063/1.458517
40.
40. S. Rettig and J. Trotter, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 43, 2260 (1987).
http://dx.doi.org/10.1107/S0108270187088152
41.
41. H. Fujihisa, Y. Akahama, H. Kawamura, H. Yamawaki, M. Sakashita, T. Yamada, K. Honda, and T. Le Bihan, Phys. Rev. B 70, 134106 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134106
42.
42. O. Degtyareva, E. Gregoryanz, M. Somayazulu, H.-k. Mao, and R. J. Hemley, Phys. Rev. B 71, 214104 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.214104
43.
43. C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).
http://dx.doi.org/10.1038/nphys625
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/17/10.1063/1.4874158
Loading
/content/aip/journal/jcp/140/17/10.1063/1.4874158
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/17/10.1063/1.4874158
2014-05-07
2016-12-08

Abstract

Hydrogen sulfide (HS) is a prototype molecular system and a sister molecule of water (HO). The phase diagram of solid HS at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S–H bond and larger atomic core difference between H and S. Metallization is yet achieved for HO, but it was observed for HS above 96 GPa. However, the metallic structure of HS remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid HS at pressure ranges of 10–200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. , 1254 (2000)]. Our study unravels a superconductive potential of metallic HS with an estimated maximal transition temperature of ∼80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH, GeH, etc.).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/17/1.4874158.html;jsessionid=TaRcs668iUHZlMBC5bPWjF8I.x-aip-live-02?itemId=/content/aip/journal/jcp/140/17/10.1063/1.4874158&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/17/10.1063/1.4874158&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/17/10.1063/1.4874158'
Right1,Right2,Right3,