1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/17/10.1063/1.4874635
1.
1. D. Scharf, G. J. Martyna, and M. L. Klein, Low Temp. Phys. 19, 364 (1993)
1.D. Scharf, G. J. Martyna, and M. L. Klein, [Fiz. Nizk. Temp. 19, 516 (1993)].
2.
2. M. Zoppi, M. Neumann, and M. Celli, Phys. Rev. B 65, 092204 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.092204
3.
3. Y. Yonetani and K. Kinugawa, J. Chem. Phys. 120, 10624 (2004).
http://dx.doi.org/10.1063/1.1735613
4.
4. Y. Yonetani and K. Kinugawa, J. Chem. Phys. 119, 9651 (2003).
http://dx.doi.org/10.1063/1.1616912
5.
5. F. J. Bermejo, K. Kinugawa, C. Cabrillo, S. M. Bennington, B. Fak, M. T. Fernandez-Diaz, P. Verkerk, J. Dawidowski, and R. Fernandez-Perea, Phys. Rev. Lett. 84, 5359 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5359
6.
6. F. J. Bermejo, B. Fak, S. M. Bennington, K. Kinugawa, J. Dawidowski, M. T. Fernandez-Diaz, C. Cabrillo, and R. Fernandez-Perea, Phys. Rev. B 66, 212202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.212202
7.
7. J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Phys. Chem. B 108, 19799 (2004).
http://dx.doi.org/10.1021/jp040425y
8.
8. J. Liu and W. H. Miller, J. Chem. Phys. 128, 144511 (2008).
http://dx.doi.org/10.1063/1.2889945
9.
9. T. F. Miller and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005).
http://dx.doi.org/10.1063/1.1893956
10.
10. I. Georgescu, J. Deckman, L. J. Fredrickson, and V. A. Mandelshtam, J. Chem. Phys. 134, 174109 (2011).
http://dx.doi.org/10.1063/1.3585648
11.
11. I. F. Silvera and V. V. Goldman, J. Chem. Phys. 69, 4209 (1978).
http://dx.doi.org/10.1063/1.437103
12.
12. K. Hyeon-Deuk and K. Ando, Chem. Phys. Lett. 532, 124 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.02.073
13.
13. K. Ando, Bull. Chem. Soc. Jpn. 82, 975 (2009).
http://dx.doi.org/10.1246/bcsj.82.975
14.
14. K. Ando, Chem. Phys. Lett. 523, 134 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.019
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4874635 for the complete theoretical derivations, simulation details, and additional figures of radial distribution functions and time-dependent diffusion coefficients. [Supplementary Material]
16.
16. E. Heatwole and O. V. Prezhdo, J. Chem. Phys. 126, 204108 (2007).
http://dx.doi.org/10.1063/1.2742384
17.
17. Y. Shigeta, H. Miyachi, and K. Hirao, J. Chem. Phys. 125, 244102 (2006).
http://dx.doi.org/10.1063/1.2404677
18.
18. F. Grossmann, Chem. Phys. Lett. 262, 470 (1996).
http://dx.doi.org/10.1016/0009-2614(96)01110-4
19.
19. F. Grossmann and T. Kramer, J. Phys. A 44, 445309 (2011).
http://dx.doi.org/10.1088/1751-8113/44/44/445309
20.
20. S.-Y. Lee and E. J. Heller, J. Chem. Phys. 76, 3035 (1982).
http://dx.doi.org/10.1063/1.443342
21.
21. M. H. Beck, A. Jackle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
22.
22. I. Burghardt, K. Giri, and G. A. Worth, J. Chem. Phys. 129, 174104 (2008).
http://dx.doi.org/10.1063/1.2996349
23.
23. D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102 (2008).
http://dx.doi.org/10.1063/1.2828509
24.
24. K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 131, 064501 (2009).
http://dx.doi.org/10.1063/1.3200937
25.
25. K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 132, 164507 (2010).
http://dx.doi.org/10.1063/1.3397809
26.
26. P. Loubeyre, M. Jean-Louis, and I. F. Silvera, Phys. Rev. B 43, 10191 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.10191
27.
27. A. Nakayama and N. Makri, J. Chem. Phys. 119, 8592 (2003).
http://dx.doi.org/10.1063/1.1611473
28.
28. B. Dunweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
http://dx.doi.org/10.1063/1.465445
29.
29. I.-C. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
http://dx.doi.org/10.1021/jp0477147
30.
30. D. E. Diller, J. Chem. Phys. 42, 2089 (1965).
http://dx.doi.org/10.1063/1.1696250
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/17/10.1063/1.4874635
Loading
/content/aip/journal/jcp/140/17/10.1063/1.4874635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/17/10.1063/1.4874635
2014-05-02
2014-10-26

Abstract

Liquid para-hydrogen (-H) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase -H. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of -H liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/17/1.4874635.html;jsessionid=bs8ofj39ptjc8.x-aip-live-02?itemId=/content/aip/journal/jcp/140/17/10.1063/1.4874635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/17/10.1063/1.4874635
10.1063/1.4874635
SEARCH_EXPAND_ITEM