1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Molecular properties of excited electronic state: Formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/18/10.1063/1.4863563
1.
1. M. Head-Gordon, J. Phys. Chem. 100, 13213 (1996).
http://dx.doi.org/10.1021/jp953665+
2.
2. Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer, A New Dimension to Quantum Chemistry: Analytical Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford, New York, 1994).
3.
3. T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112, 543 (2012).
http://dx.doi.org/10.1021/cr2002239
4.
4. P. Pulay, in Applications of Electronic Structure Theory, edited by H. F. Schaefer (Plenum, New York, 1977), p. 153.
5.
5. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. Symp. 13, 225 (1979).
http://dx.doi.org/10.1002/qua.560160825
6.
6. N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, and E. D. Simandiras, Chem. Phys. Lett. 120, 151 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87031-7
7.
7. D. J. Fox, Y. Osamura, M. R. Hoffmann, J. F. Gaw, G. Fitzgerald, Y. Yamaguchi, and H. F. Schaefer, Chem. Phys. Lett. 102, 17 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80648-4
8.
8. H. Koch, H. J. A. Jensen, P. Jørgensen, T. Helgaker, G. E. Scuseria, and H. F. Schaefer, J. Chem. Phys. 92, 4924 (1990).
http://dx.doi.org/10.1063/1.457710
9.
9. J. Gauss and D. Cremer, Adv. Quantum Chem. 23, 205 (1992).
http://dx.doi.org/10.1016/S0065-3276(08)60031-3
10.
10. J. Gauss, J. F. Stanton, and R. J. Bartlett, J. Chem. Phys. 97, 7825 (1992).
http://dx.doi.org/10.1063/1.463452
11.
11. M. Kállay and J. Gauss, J. Chem. Phys. 120, 6841 (2004).
http://dx.doi.org/10.1063/1.1668632
12.
12. W. Z. Liang, Y. Zhao, and M. Head-Gordon, J. Chem. Phys. 123, 194106 (2005).
http://dx.doi.org/10.1063/1.2114847
13.
13. A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).
http://dx.doi.org/10.1016/0022-2836(76)90311-9
14.
14. J. Gao, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1996), Vol. 7, p. 119.
15.
15. B. M. Rode, C. F. Schwenk, T. S. Hofer, and B. R. Randolf, Coord. Chem. Rev. 249, 2993 (2005).
http://dx.doi.org/10.1016/j.ccr.2005.03.032
16.
16. M. Bühl, S. Grigoleit, H. Kabrede, and F. T. Mauschick, Chem. Eur. J. 12, 477 (2006).
http://dx.doi.org/10.1002/chem.200500285
17.
17. A. Cembran and J. Gao, Mol. Phys. 104, 943 (2006).
http://dx.doi.org/10.1080/00268970500417556
18.
18. A. Tongraar, T. Kerdcharoen, and S. Hannongbua, J. Phys. Chem. A 110, 4924 (2006).
http://dx.doi.org/10.1021/jp057342h
19.
19. I. Tubert-Brohman, O. Acevedo, and W. L. Jorgensen, J. Am. Chem. Soc. 128, 16904 (2006).
http://dx.doi.org/10.1021/ja065863s
20.
20. O. Acevedo and W. L. Jorgensen, J. Org. Chem. 71, 4896 (2006).
http://dx.doi.org/10.1021/jo060533b
21.
21. O. Acevedo and W. L. Jorgensen, J. Am. Chem. Soc. 128, 6141 (2006).
http://dx.doi.org/10.1021/ja057523x
22.
22. O. Acevedo and W. L. Jorgensen, J. Chem. Theory Comput. 3, 1412 (2007).
http://dx.doi.org/10.1021/ct700078b
23.
23. O. Acevedo, W. L. Jorgensen, and J. D. Evanseck, J. Chem. Theory Comput. 3, 132 (2007).
http://dx.doi.org/10.1021/ct6002753
24.
24. A. N. Alexandrova and W. L. Jorgensen, J. Phys. Chem. B 111, 720 (2007).
http://dx.doi.org/10.1021/jp066478s
25.
25. H. Gunaydin, O. Acevedo, W. L. Jorgensen, and K. N. Houk, J. Chem. Theory Comput. 3, 1028 (2007).
http://dx.doi.org/10.1021/ct050318n
26.
26. T. Steinbrecher and M. Elstner, in Biomolecular Simulations: Methods and Protocols, edited by L. Monticelli and E. Salonen (Humana Press, New York, 2013), p. 91 and references therein.
27.
27. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449
28.
28. M. E. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143803
29.
29. C. Adamo and D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013).
http://dx.doi.org/10.1039/c2cs35394f
30.
30. V. Barone and A. Polimeno, Chem. Soc. Rev. 36, 1724 (2007).
http://dx.doi.org/10.1039/b515155b
31.
31. C. V. Caillie and R. D. Amos, Chem. Phys. Lett. 308, 249 (1999);
http://dx.doi.org/10.1016/S0009-2614(99)00646-6
31.C. V. Caillie and R. D. Amos, Chem. Phys. Lett. 317, 159 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01346-9
32.
32. J. Hutter, J. Chem. Phys. 118, 3928 (2003).
http://dx.doi.org/10.1063/1.1540109
33.
33. F. Furche and R. Ahlrichs, J. Chem. Phys. 117, 7433 (2002);
http://dx.doi.org/10.1063/1.1508368
33.F. Furche and R. Ahlrichs, J. Chem. Phys. 121, 12772E (2004).
http://dx.doi.org/10.1063/1.1824903
34.
34. R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A 104, 5631 (2000).
http://dx.doi.org/10.1021/jp000156l
35.
35. M. Chiba, T. Tsuneda, and K. Hirao, J. Chem. Phys. 124, 144106 (2006).
http://dx.doi.org/10.1063/1.2186995
36.
36. G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, J. Chem. Phys. 124, 094107 (2006).
http://dx.doi.org/10.1063/1.2173258
37.
37. F. Liu, Z. Gan, Y. Shao, C.-P. Hsu, A. Dreuw, M. Head-Gordon, B. T. Miller, B. R. Brooks, J.-G. Yu, T. R. Furlani, and J. Kong, Mol. Phys. 108, 2791 (2010).
http://dx.doi.org/10.1080/00268976.2010.526642
38.
38. J. Liu and W. Z. Liang, J. Chem. Phys. 134, 044114 (2011).
http://dx.doi.org/10.1063/1.3548063
39.
39. H. Li, H. M. Netzloff, and M. S. Gordon, J. Chem. Phys. 125, 194103 (2006).
http://dx.doi.org/10.1063/1.2378767
40.
40. N. M. Thellamurege, F. Cui, and H. Li, J. Chem. Phys. 139, 084106 (2013).
http://dx.doi.org/10.1063/1.4819139
41.
41. M. Seth, G. Mazur, and T. Ziegler, Theor. Chim. Acta 129, 331 (2011).
http://dx.doi.org/10.1007/s00214-010-0819-2
42.
42. J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011).
http://dx.doi.org/10.1063/1.3605504
43.
43. J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011).
http://dx.doi.org/10.1063/1.3659312
44.
44. J. Liu and W. Z. Liang, J. Chem. Phys. 138, 024101 (2013).
http://dx.doi.org/10.1063/1.4773397
45.
45. D. P. Chen, J. Liu, H. L. Ma, Q. Zeng, and W. Z. Liang, Sci. China Chem. 57, 48 (2014).
http://dx.doi.org/10.1007/s11426-013-5006-6
46.
46. H. L. Ma, J. Liu, and W. Z. Liang, J. Chem. Theory Comput. 8, 4474 (2012).
http://dx.doi.org/10.1021/ct300640c
47.
47. C. Sun, W. Z. Liang, and Y. Zhao, Chin. J. Chem. Phys. 26, 617 (2013).
http://dx.doi.org/10.1063/1674-0068/26/06/617-626
48.
48. W. Z. Liang and W. Wu, Sci. China Chem. 56, 1267 (2013).
http://dx.doi.org/10.1007/s11426-013-4907-8
49.
49. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
50.
50. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).
http://dx.doi.org/10.1021/cr00031a013
51.
51. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
http://dx.doi.org/10.1021/cr9904009
52.
52. Y. Wang and H. Li, J. Chem. Phys. 133, 034108 (2010).
http://dx.doi.org/10.1063/1.3462248
53.
53. D. Si and H. Li, J. Chem. Phys. 133, 144112 (2010).
http://dx.doi.org/10.1063/1.3491814
54.
54. B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodošček, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).
http://dx.doi.org/10.1002/jcc.21287
55.
55. H. L. Woodcock III, M. Hodošček, A. T. B. Gilbert, P. M. W. Gill, H. F. Schaefer III, and B. R. Brooks, J. Comput. Chem. 28, 1485 (2007).
http://dx.doi.org/10.1002/jcc.20587
56.
56. Q. Cui and M. Karplus, J. Chem. Phys. 112, 1133 (2000).
http://dx.doi.org/10.1063/1.480658
57.
57. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
58.
58. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
59.
59. M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific, Singapore, 1995), p. 155;
59.in Recent Developments and Applications in Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996), p. 391.
60.
60. U. C. Singh and P. A. Kollman, J. Comput. Chem. 7, 718 (1986).
http://dx.doi.org/10.1002/jcc.540070604
61.
61. M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700 (1990).
http://dx.doi.org/10.1002/jcc.540110605
62.
62. G. G. Ferenczy, J.-L. Rivail, P. R. Surjan, and G. Naray-Szabo, J. Comput. Chem. 13, 830 (1992).
http://dx.doi.org/10.1002/jcc.540130706
63.
63. V. Thery, D. Rinaldi, J.-L. Rivail, B. Maigret, and G. G. Ferenczy, J. Comput. Chem. 15, 269 (1994).
http://dx.doi.org/10.1002/jcc.540150303
64.
64. F. Maseras and K. Morokuma, J. Comput. Chem. 16, 1170 (1995).
http://dx.doi.org/10.1002/jcc.540160911
65.
65. X. Assfeld and J.-L. Rivail, Chem. Phys. Lett. 263, 100 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01165-7
66.
66. G. Monard, M. Loos, V. Thery, K. Baka, and J.-L. Rivail, Int. J. Quantum Chem. 58, 153 (1996).
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
67.
67. M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).
http://dx.doi.org/10.1021/jp962071j
68.
68. J. Gao, P. Amara, C. Alhambra, and M. J. Field, J. Phys. Chem. A 102, 4714 (1998).
http://dx.doi.org/10.1021/jp9809890
69.
69. I. Antes and W. Thiel, J. Phys. Chem. A 103, 9290 (1999).
http://dx.doi.org/10.1021/jp991771w
70.
70. S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct.: THEOCHEM 461–462, 1 (1999).
http://dx.doi.org/10.1016/S0166-1280(98)00475-8
71.
71. Y. Zhang, T.-S. Lee, and W. Yang, J. Chem. Phys. 110, 46 (1999);
http://dx.doi.org/10.1063/1.478083
71.Y. Zhang, J. Chem. Phys. 122, 024114 (2005).
http://dx.doi.org/10.1063/1.1834899
72.
72. P. Amara, M. J. Field, C. Alhambra, and J. Gao, Theor. Chem. Acc. 104, 336 (2000).
http://dx.doi.org/10.1007/s002140000153
73.
73. T. Vreven, B. Mennucci, C. Silva, K. Morokuma, and J. Tomasi, J. Chem. Phys. 115, 62 (2001).
http://dx.doi.org/10.1063/1.1376127
74.
74. G. A. DiLabio, M. M. Hurley, and P. A. Christiansen, J. Chem. Phys. 116, 9578 (2002).
http://dx.doi.org/10.1063/1.1477182
75.
75. N. Ferré, X. Assfeld, and J.-L. Rivail, J. Comput. Chem. 23, 610 (2002).
http://dx.doi.org/10.1002/jcc.10058
76.
76. J. Gao and D. G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.091301.150114
77.
77. T. Kerdcharoen and K. Morokuma, Chem. Phys. Lett. 355, 257 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00210-5
78.
78. K. Morokuma, Philos. Trans. R. Soc. London, Ser. A 360, 1149 (2002).
http://dx.doi.org/10.1098/rsta.2002.0993
79.
79. D. G. Truhlar, J. Gao, C. Alhambra, M. Garcia-Viloca, J. Corchado, M. L. Sanchez, and J. Villa, Acc. Chem. Res. 35, 341 (2002).
http://dx.doi.org/10.1021/ar0100226
80.
80. L. S. Devi-Kesavan, M. Garcia-Viloca, and J. Gao, Theor. Chem. Acc. 109, 133 (2003).
http://dx.doi.org/10.1007/s00214-002-0419-x
81.
81. J. Pu, J. Gao, and D. G. Truhlar, J. Phys. Chem. A 108, 632 (2004).
http://dx.doi.org/10.1021/jp036755k
82.
82. J. Pu, J. Gao, and D. G. Truhlar, J. Phys. Chem. A 108, 5454 (2004).
http://dx.doi.org/10.1021/jp049529z
83.
83. J. Pu, J. Gao, and D. G. Truhlar, Chem. Phys. Chem. 6, 1853 (2005).
http://dx.doi.org/10.1002/cphc.200400602
84.
84. D. Das, K. P. Eurenius, E. M. Billings, P. Sherwood, D. C. Chatfield, M. Hodoscek, and B. R. Brooks, J. Chem. Phys. 117, 10534 (2002).
http://dx.doi.org/10.1063/1.1520134
85.
85. P. H. Kønig, M. Hoffmann, Th. Frauenheim, and Q. Cui, J. Phys. Chem. B 109, 9082 (2005).
http://dx.doi.org/10.1021/jp0442347
86.
86. A. Ghysels, H. L. Woodcock III, J. D. Larkin, B. T. Miller, Y. Shao, J. Kong, D. Van Neck, V. Van Speybroeck, M. Waroquier, and B. R. Brooks, J. Chem. Theory Comput. 7, 496 (2011).
http://dx.doi.org/10.1021/ct100473f
87.
87. B. Waszkowycz, I. H. Hillier, N. Gensmantel, and D. W. Payling, J. Chem. Soc., Perkin Trans. 2 1991, 2025.
http://dx.doi.org/10.1039/P29910002025
88.
88. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971);
http://dx.doi.org/10.1063/1.1674902
88.W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972);
http://dx.doi.org/10.1063/1.1677527
88.P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).
http://dx.doi.org/10.1007/BF00533485
89.
89. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
90.
90. W. L. Jørgensen, J. Chandrasekhar, and J. P. Madura, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
91.
91. A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
92.
92. N. Foloppe and A. D. MacKerell Jr., J. Comput. Chem. 21, 86 (2000).
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
93.
93. J.-W. Chu, B. L. Trout, and B. R. Brooks, J. Chem. Phys. 119, 12708 (2003).
http://dx.doi.org/10.1063/1.1627754
94.
94. N. Minezawa, N. D. Silva, F. Zahariev, and M. S. Gordon, J. Chem. Phys. 134, 054111 (2011).
http://dx.doi.org/10.1063/1.3523578
95.
95. J. M. Dudik, C. R. Johnson, and S. A. Asher, J. Phys. Chem. 89, 3805 (1985).
http://dx.doi.org/10.1021/j100264a008
96.
96. R. D. Nelson, D. R. Lide, and A. A. Maryott, Natl. Stand. Ref. Data Ser. 10, 13 (1967);
96.S. L. Shostak, W. L. Ebenstein, and J. S. Muenter, J. Chem. Phys. 94, 5875 (1991).
http://dx.doi.org/10.1063/1.460471
97.
97.The non-neutral MM range may introduce some problems, we refer the readers to some QM/MM review articles, e.g., H. Lin and D. G. Truhlar, Theor. Chem. Acc. 117, 185 (2007).
http://dx.doi.org/10.1007/s00214-006-0143-z
98.
98. R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, Proc. Natl. Acad. Sci. U.S.A. 99, 7877 (2002).
http://dx.doi.org/10.1073/pnas.082243699
99.
99. K. D. Piatkevich, J. Hulit, O. M. Subach, B. Wu, A. Abdulla, J. E. Segall, and V. V. Verkhusha ,Proc. Natl. Acad. Sci. U.S.A. 107, 5369 (2010);
http://dx.doi.org/10.1073/pnas.0914365107
99.K. D. Piatkevich, V. N. Malashkevich, S. C. Almo, and V. V. Verkhusha, J. Am. Chem. Soc. 132, 10762 (2010).
http://dx.doi.org/10.1021/ja101974k
100.
100. C. Randino, M. Nadal-Ferret, R. Gelabert, M. Moreno, and J. M. Lluch, Theor. Chem. Acc. 132, 1327 (2013).
http://dx.doi.org/10.1007/s00214-012-1327-3
101.
101. C. Randino, M. Moreno, R. Gelabert, and J. M. Lluch, J. Chem. Phys. B 116, 14302 (2012).
http://dx.doi.org/10.1021/jp3104134
102.
102. S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101, 6141 (1994).
http://dx.doi.org/10.1063/1.468398
103.
103. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).
http://dx.doi.org/10.1103/PhysRev.112.90
104.
104. J. Gao, J. J. Pavelites, and D. Habibollazadeh, J. Phys. Chem. 100, 2689 (1996).
http://dx.doi.org/10.1021/jp9521969
105.
105. B. T. Thole, Chem. Phys. 59, 341 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85176-2
106.
106. W. S. Xie, J. Z. Pu, A. D. MacKerell Jr., and J. Gao, J. Chem. Theory Comput. 3, 1878 (2007).
http://dx.doi.org/10.1021/ct700146x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4863563
Loading
/content/aip/journal/jcp/140/18/10.1063/1.4863563
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/18/10.1063/1.4863563
2014-02-05
2014-10-31

Abstract

This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys.135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys.135, 184111 (2011)] on analytical excited-state energy Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with molecular mechanics (MM). The formalism, implementation, and applications of analytical first and second energy derivatives of TDDFT/MM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of adiabatic excitation energies, and excited-state geometries, harmonic vibrational frequencies, and infrared intensities for a number of benchmark systems. The consistent results with the full quantum mechanical method and other hybrid theoretical methods indicate the reliability of the current numerical implementation of developed algorithms. The computational accuracy and efficiency of the current analytical approach are also checked and the computational efficient strategies are suggested to speed up the calculations of complex systems with many MM degrees of freedom. Finally, we apply the current analytical approach in TDDFT/MM to a realistic system, a red fluorescent protein chromophore together with part of its nearby protein matrix. The calculated results indicate that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the large Stokes shift.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/18/1.4863563.html;jsessionid=f594am60qsia0.x-aip-live-02?itemId=/content/aip/journal/jcp/140/18/10.1063/1.4863563&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular properties of excited electronic state: Formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4863563
10.1063/1.4863563
SEARCH_EXPAND_ITEM