1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Accurate and systematically improvable density functional theory embedding for correlated wavefunctions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/18/10.1063/1.4864040
1.
1. A. Warshel and M. Karplus, J. Am. Chem. Soc. 94, 5612 (1972).
http://dx.doi.org/10.1021/ja00771a014
2.
2. A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).
http://dx.doi.org/10.1016/0022-2836(76)90311-9
3.
3. P. Sherwood, A. H. de Vries, S. J. Collins, S. P. Greatbanks, N. A. Burton, M. A. Vincent, and I. H. Hillier, Faraday Discuss. 106, 79 (1997).
http://dx.doi.org/10.1039/a701790a
4.
4. J. L. Gao, P. Amara, C. Alhambra, and M. J. Field, J. Phys. Chem. A 102, 4714 (1998).
http://dx.doi.org/10.1021/jp9809890
5.
5. H. Lin and D. G. Truhlar, Theor. Chem. Acc. 117, 185 (2007).
http://dx.doi.org/10.1007/s00214-006-0143-z
6.
6. H. M. Senn and W. Thiel, Angew. Chem., Int. Ed. 48, 1198 (2009).
http://dx.doi.org/10.1002/anie.200802019
7.
7. L. Hu, P. Söderhjelm, and U. Ryde, J. Chem. Theory Comput. 7, 761 (2011).
http://dx.doi.org/10.1021/ct100530r
8.
8. S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct.: THEOCHEM 461–462, 1 (1999).
http://dx.doi.org/10.1016/S0166-1280(98)00475-8
9.
9. F. Maseras and K. Morokuma, J. Comput. Chem. 16, 1170 (1995).
http://dx.doi.org/10.1002/jcc.540160911
10.
10. K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
11.
11. D. G. Federov and K. Kitaura, J. Chem. Phys. 120, 6832 (2004).
http://dx.doi.org/10.1063/1.1687334
12.
12. D. G. Federov and K. Kitaura, J. Phys. Chem. A 111, 6904 (2007).
http://dx.doi.org/10.1021/jp0716740
13.
13. P. Arora, W. Li, P. Piecuch, J. W. Evans, M. Albao, and M. S. Gordon, J. Phys. Chem. C 114, 12649 (2010).
http://dx.doi.org/10.1021/jp102998y
14.
14. S. R. Pruitt, M. A. Addicoat, M. A. Collins, and M. S. Gordon, Phys. Chem. Chem. Phys. 14, 7752 (2012).
http://dx.doi.org/10.1039/c2cp00027j
15.
15. K. R. Brorsen, N. Minezawa, F. Xu, T. L. Windus, and M. S. Gordon, J. Chem. Theory Comput. 8, 5008 (2012).
http://dx.doi.org/10.1021/ct3007869
16.
16. A. Gaenko, T. L. Windus, M. Sosonkina, and M. S. Gordon, J. Chem. Theory Comput. 9, 222 (2013).
http://dx.doi.org/10.1021/ct300614z
17.
17. G. Senatore and K. Subbaswamy, Phys. Rev. B 34, 5754 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5754
18.
18. P. Cortona, Phys. Rev. B 44, 8454 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.8454
19.
19. T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993).
http://dx.doi.org/10.1021/j100132a040
20.
20. J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 133, 084103 (2010).
http://dx.doi.org/10.1063/1.3474575
21.
21. J. D. Goodpaster, T. A. Barnes, and T. F. Miller III, J. Chem. Phys. 134, 164108 (2011).
http://dx.doi.org/10.1063/1.3582913
22.
22. Ł. Rajchel, P. S. Żuchowski, M. M. Szczȩśniak, and G. Chałasiński, Chem. Phys. Lett. 486, 160 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.12.083
23.
23. S. Fux, C. R. Jacob, J. Neugebauer, L. Visscher, and M. Reiher, J. Chem. Phys. 132, 164101 (2010).
http://dx.doi.org/10.1063/1.3376251
24.
24. J. Nafziger, Q. Wu, and A. Wasserman, J. Chem. Phys. 135, 234101 (2011).
http://dx.doi.org/10.1063/1.3667198
25.
25. N. Govind, Y. A. Yang, A. J. R. da Silva, and E. A. Carter, Chem. Phys. Lett. 295, 129 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00939-7
26.
26. N. Govind, Y. A. Wang, and E. A. Carter, J. Chem. Phys. 110, 7677 (1999).
http://dx.doi.org/10.1063/1.478679
27.
27. A. S. P. Gomes, C. R. Jacob, and L. Visscher, Phys. Chem. Chem. Phys. 10, 5353 (2008).
http://dx.doi.org/10.1039/b805739g
28.
28. T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.012504
29.
29. Y. G. Khait and M. R. Hoffmann, J. Chem. Phys. 133, 044107 (2010).
http://dx.doi.org/10.1063/1.3460594
30.
30. C. Huang, M. Pavone, and E. A. Carter, J. Chem. Phys. 134, 154110 (2011).
http://dx.doi.org/10.1063/1.3577516
31.
31. C. Huang and E. A. Carter, J. Chem. Phys. 135, 194104 (2011).
http://dx.doi.org/10.1063/1.3659293
32.
32. S. Hofener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012).
http://dx.doi.org/10.1063/1.3675845
33.
33. O. Roncero, A. Zanchet, P. Villarreal, and A. Aguado, J. Chem. Phys. 131, 234110 (2009).
http://dx.doi.org/10.1063/1.3274823
34.
34. A. Severo Pereira Gomes and C. R. Jacob, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 108, 222 (2012).
http://dx.doi.org/10.1039/c2pc90007f
35.
35. J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 137, 224113 (2012).
http://dx.doi.org/10.1063/1.4770226
36.
36. F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012).
http://dx.doi.org/10.1021/ct300544e
37.
37. T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 139, 024103 (2013).
http://dx.doi.org/10.1063/1.4811112
38.
38. P. G. Lykos and R. G. Parr, J. Chem. Phys. 24, 1166 (1956).
http://dx.doi.org/10.1063/1.1742733
39.
39. J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
http://dx.doi.org/10.1103/PhysRev.116.287
40.
40. A. A. Cantu and S. Huzinaga, J. Chem. Phys. 55, 5543 (1971).
http://dx.doi.org/10.1063/1.1675720
41.
41. H. Stoll, B. Paulus, and P. Fulde, J. Chem. Phys. 123, 144108 (2005).
http://dx.doi.org/10.1063/1.2052708
42.
42. R. A. Mata, H.-J. Werner, and M. Schütz, J. Chem. Phys. 128, 144106 (2008).
http://dx.doi.org/10.1063/1.2884725
43.
43. T. M. Henderson, J. Chem. Phys. 125, 014105 (2006).
http://dx.doi.org/10.1063/1.2209688
44.
44. B. Swerts, L. F. Chibotaru, R. Lindh, L. Seijo, Z. Barandiaran, S. Clima, K. Pierloot, and M. F. A. Hendrickx, J. Chem. Theory Comput. 4, 586 (2008).
http://dx.doi.org/10.1021/ct7003148
45.
45. J. L. Pascual, N. Barros, Z. Barandiaran, and L. Seijo, J. Phys. Chem. A 113, 12454 (2009).
http://dx.doi.org/10.1021/jp9030199
46.
46. C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992).
http://dx.doi.org/10.1016/0009-2614(92)86093-W
47.
47. C. Hampel and H.-J. Werner, J. Chem. Phys. 104, 6286 (1996).
http://dx.doi.org/10.1063/1.471289
48.
48. M. Schütz and H.-J. Werner, Chem. Phys. Lett. 318, 370 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00066-X
49.
49. M. Schütz, J. Chem. Phys. 113, 9986 (2000).
http://dx.doi.org/10.1063/1.1323265
50.
50. M. Schütz, G. Rauhut, and H.-J. Werner, J. Phys. Chem. A 102, 5997 (1998).
http://dx.doi.org/10.1021/jp981168y
51.
51. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
52.
52. H.-J Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Shütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see www.molpro.net.
53.
53. J. Pipek and P. Mezey, J. Chem. Phys. 90, 4916 (1989).
http://dx.doi.org/10.1063/1.456588
54.
54. M. Schütz and F.-R. Manby, Phys. Chem. Chem. Phys. 5, 3349 (2003).
http://dx.doi.org/10.1039/b304550a
55.
55. H.-J. Werner and M. Schütz, J. Chem. Phys. 135, 144116 (2011).
http://dx.doi.org/10.1063/1.3641642
56.
56. T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
57.
57. T. H. Dunning Jr., K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
http://dx.doi.org/10.1063/1.1367373
58.
58. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
59.
59. J. A. Pople and P. C. Haharan, Theor. Chim. Acta 28, 213 (1973).
http://dx.doi.org/10.1007/BF00533485
60.
60. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
61.
61. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
http://dx.doi.org/10.1063/1.1677527
62.
62. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
63.
63. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
64.
64. C. Møller and M. S. Plesset, Phys. Rev. 46, 0618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
65.
65. M. Schütz, G. Hetzer, and H.-J. Werner, J. Chem. Phys. 111, 5691 (1999).
http://dx.doi.org/10.1063/1.479957
66.
66. Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Phys. Chem. 121, 9793 (2004).
http://dx.doi.org/10.1063/1.1809602
67.
67. N. J. Russ and T. D. Crawford, J. Chem. Phys. 121, 691 (2004).
http://dx.doi.org/10.1063/1.1759322
68.
68. H. L. Woodcock, H. F. Schaefer III, and P.-R. Schreiner, J. Phys. Chem. A 106, 11923 (2002).
http://dx.doi.org/10.1021/jp0212895
69.
69.See supplementary material at http://dx.doi.org/10.1063/1.4864040 for molecular geometries and additional results. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4864040
Loading
/content/aip/journal/jcp/140/18/10.1063/1.4864040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/18/10.1063/1.4864040
2014-02-10
2014-11-01

Abstract

We analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using wavefunction methods, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We test an MP2 correction for this term and demonstrate that the corrected embedding scheme accurately reproduces wavefunction calculations for a series of chemical reactions. Our projector-based embedding method uses localized occupied orbitals to partition the system; as with other local correlation methods, abrupt changes in the character of the localized orbitals along a reaction coordinate can lead to discontinuities in the embedded energy, but we show that these discontinuities are small and can be systematically reduced by increasing the size of the active region. Convergence of reaction energies with respect to the size of the active subsystem is shown to be rapid for all cases where the density functional treatment is able to capture the polarization of the environment, even in conjugated systems, and even when the partition cuts across a double bond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/18/1.4864040.html;jsessionid=2nv56noxn1owh.x-aip-live-02?itemId=/content/aip/journal/jcp/140/18/10.1063/1.4864040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Accurate and systematically improvable density functional theory embedding for correlated wavefunctions
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4864040
10.1063/1.4864040
SEARCH_EXPAND_ITEM