1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Fifty years of density-functional theory in chemical physics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/18/10.1063/1.4869598
1.
1. Density Functional Methods in Physics, edited by R. M. Dreizler and J. da Providencia (Plenum Press, New York, 1985).
2.
2. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
3.
3. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
4.
4. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
8.
8. K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
9.
9. J. Klimes and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
10.
10. L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).
http://dx.doi.org/10.1017/S0305004100011683
11.
11. E. Fermi, Rend. Accad. Lincei 6, 602 (1927).
12.
12. P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
http://dx.doi.org/10.1017/S0305004100016108
13.
13. E. Teller, Rev. Mod. Phys. 34, 627 (1962).
http://dx.doi.org/10.1103/RevModPhys.34.627
14.
14. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989).
15.
15. I. N. Levine, Quantum Chemistry, 7th ed. (Pearson Education Inc., 2014).
16.
16.Cost scaling can of course be reduced using integral cutoffs, “resolution of the identity” (RI) methods, localized orbital schemes, etc., but formal scaling is nevertheless a useful way to compare the costs of theories.
17.
17. J. C. Slater, Phys. Rev. 81, 385 (1951).
http://dx.doi.org/10.1103/PhysRev.81.385
18.
18. J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGrawHill, New York, 1974).
19.
19. A. D. Becke, J. Chem. Phys. 76, 6037 (1982);
http://dx.doi.org/10.1063/1.442958
19.A. D. Becke, J. Chem. Phys. 78, 4787 (1983).
http://dx.doi.org/10.1063/1.445285
20.
20. M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
http://dx.doi.org/10.1073/pnas.76.12.6062
21.
21. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
22.
22. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
23.
23. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
24.
24. J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).
http://dx.doi.org/10.1016/S0065-3276(08)60541-9
25.
25. K. H. Johnson, Adv. Quantum Chem. 7, 143 (1973).
http://dx.doi.org/10.1016/S0065-3276(08)60561-4
26.
26. E. J. Baerends and P. Ros, Int. J. Quantum Chem., Quantum Chem. Symp. 12, 169 (1978).
27.
27. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396 (1979);
http://dx.doi.org/10.1063/1.438728
27.B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 4993 (1979).
http://dx.doi.org/10.1063/1.438313
28.
28. B. Delley and D. E. Ellis, J. Chem. Phys. 76, 1949 (1982).
http://dx.doi.org/10.1063/1.443168
29.
29. J. Harris and R. O. Jones, J. Phys. F 4, 1170 (1974).
http://dx.doi.org/10.1088/0305-4608/4/8/013
30.
30. D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975);
http://dx.doi.org/10.1016/0038-1098(75)90618-3
30.D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.2884
31.
31. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
32.
32. J. Harris, Int. J. Quantum Chem., Quantum Chem. Symp. 13, 189 (1979).
33.
33. J. Harris, Phys. Rev. A 29, 1648 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1648
34.
34. A. D. Becke, J. Chem. Phys. 88, 1053 (1988).
http://dx.doi.org/10.1063/1.454274
35.
35. A. D. Becke, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, 1995).
36.
36. P. M. Boerrigter, G. te Velde, and E. J. Baerends, Int. J. Quantum Chem. 33, 87 (1988).
http://dx.doi.org/10.1002/qua.560330204
37.
37. A. St-Amant and D. R. Salahub, Chem. Phys. Lett. 169, 387 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87064-X
38.
38. J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).
http://dx.doi.org/10.1063/1.462165
39.
39. B. Delley, J. Chem. Phys. 92, 508 (1990).
http://dx.doi.org/10.1063/1.458452
40.
40. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).
http://dx.doi.org/10.1063/1.473182
41.
41. A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
http://dx.doi.org/10.1063/1.454033
42.
42. A. D. Becke and R. M. Dickson, J. Chem. Phys. 89, 2993 (1988).
http://dx.doi.org/10.1063/1.455005
43.
43. A. D. Becke, Int. J. Quantum Chem., Quantum Chem. Symp. 23, 599 (1989).
44.
44. A. D. Becke and R. M. Dickson, J. Chem. Phys. 92, 3610 (1990).
http://dx.doi.org/10.1063/1.457869
45.
45. A. D. Becke, Phys. Rev. A 33, 2786 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.2786
46.
46. L. J. Sham, in Computational Methods in Band Theory, edited by P. M. Marcus, J. F. Janak, and A. R. Williams (Plenum, New York, 1971).
47.
47. L. Kleinman, Phys. Rev. B 30, 2223 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.2223
48.
48. P. R. Antoniewicz and L. Kleinman, Phys. Rev. B 31, 6779 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6779
49.
49. L. Kleinman and S. Lee, Phys. Rev. B 37, 4634 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.4634
50.
50. F. Herman, J. P. Van Dyke, and I. B. Ortenburger, Phys. Rev. Lett. 22, 807 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.807
51.
51. F. Herman, I. B. Ortenburger, and J. P. Van Dyke, Int. J. Quantum Chem., Quantum Chem. Symp. 3, 827 (1970).
52.
52. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
53.
53. A. D. Becke, Int. J. Quantum Chem. 23, 1915 (1983).
http://dx.doi.org/10.1002/qua.560230605
54.
54. D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1809
55.
55. C. D. Hu and D. C. Langreth, Phys. Scr. 32, 391 (1985).
http://dx.doi.org/10.1088/0031-8949/32/4/024
56.
56. A. D. Becke, J. Chem. Phys. 84, 4524 (1986).
http://dx.doi.org/10.1063/1.450025
57.
57. H. Stoll, C. M. E. Pavlidou, and H. Preuss, Theor. Chim. Acta 49, 143 (1978).
http://dx.doi.org/10.1007/BF02399063
58.
58. H. Stoll, E. Golka, and H. Preuss, Theor. Chim. Acta 55, 29 (1980).
http://dx.doi.org/10.1007/BF00551408
59.
59. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
60.
60. A. D. Becke, J. Chem. Phys. 85, 7184 (1986).
http://dx.doi.org/10.1063/1.451353
61.
61. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.8800
61.J. P. Perdew and Y. Wang see also the name correction in Phys. Rev. B 40, 3399 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3399
62.
62. E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
63.
63. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
64.
64. E. Engel, J. A. Chevary, L. D. Macdonald, and S. H. Vosko, Z. Phys. D 23, 7 (1992).
http://dx.doi.org/10.1007/BF01436696
65.
65. T. Ziegler, Chem. Rev. 91, 651 (1991).
http://dx.doi.org/10.1021/cr00005a001
66.
66. P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Int. J. Quantum Chem., Quantum Chem. Symp. 26, 319 (1992);
http://dx.doi.org/10.1002/qua.560440828
66.P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85807-M
67.
67. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
68.
68. R. Colle and D. Salvetti, Theor. Chim. Acta 37, 329 (1975).
http://dx.doi.org/10.1007/BF01028401
69.
69. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
70.
70. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 97, 7846 (1992);
http://dx.doi.org/10.1063/1.463975
70.B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).
http://dx.doi.org/10.1063/1.464906
71.
71. J. A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett. 199, 557 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85009-Y
72.
72. E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).
http://dx.doi.org/10.1002/qua.560190306
73.
73. G. K.-L. Chan and N. C. Handy, Phys. Rev. A 59, 3075 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.3075
74.
74. M. M. Odashima and K. Capelle, J. Chem. Phys. 127, 054106 (2007).
http://dx.doi.org/10.1063/1.2759202
75.
75. E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C. F. Fischer, Phys. Rev. A 44, 7071 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.7071
76.
76. S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.3649
77.
77. S. J. Chakravorty and E. R. Davidson, J. Phys. Chem. 100, 6167 (1996).
http://dx.doi.org/10.1021/jp952803s
78.
78. S. P. McCarthy and A. J. Thakkar, J. Chem. Phys. 134, 044102 (2011);
http://dx.doi.org/10.1063/1.3547262
78.S. P. McCarthy and A. J. Thakkar, J. Chem. Phys. 136, 054107 (2012).
http://dx.doi.org/10.1063/1.3679969
79.
79. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
80.
80. J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991).
81.
81. A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3761
82.
82.A correction parameter γ was discussed in Ref. 81 that restored the UEG limit without sacrificing the hydrogenic atom limit. We do not currently use this parameter in our work.
83.
83. N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001).
http://dx.doi.org/10.1080/00268970010018431
84.
84. W.-M. Hoe, A. J. Cohen, and N. C. Handy, Chem. Phys. Lett. 341, 319 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00581-4
85.
85. A. D. Becke, Int. J. Quantum Chem., Quantum Chem. Symp. 28, 625 (1994).
http://dx.doi.org/10.1002/qua.560520855
86.
86. A. D. Becke, Can. J. Chem. 74, 995 (1996).
http://dx.doi.org/10.1139/v96-110
87.
87. A. D. Becke, J. Chem. Phys. 117, 6935 (2002).
http://dx.doi.org/10.1063/1.1503772
88.
88. E. R. Johnson, R. M. Dickson, and A. D. Becke, J. Chem. Phys. 126, 184104 (2007).
http://dx.doi.org/10.1063/1.2723118
89.
89. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
90.
90. V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).
http://dx.doi.org/10.1063/1.1626543
91.
91. J. P. Perdew, J. Tao, V. N. Staroverov, and G. E. Scuseria, J. Chem. Phys. 120, 6898 (2004).
http://dx.doi.org/10.1063/1.1665298
92.
92. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.026403
93.
93. R. Neumann, R. Nobes, and N. Handy, Mol. Phys. 87, 1 (1996).
http://dx.doi.org/10.1080/00268979600100011
94.
94. C. Adamo, M. Ernzerhof, and G. E. Scuseria, J. Chem. Phys. 112, 2643 (2000).
http://dx.doi.org/10.1063/1.480838
95.
95. A. V. Arbuznikov and M. Kaupp, Chem. Phys. Lett. 381, 495 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.10.009
96.
96. A. D. Becke, J. Chem. Phys. 131, 244118 (2009).
http://dx.doi.org/10.1063/1.3280730
97.
97. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
98.
98. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
99.
99. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
100.
100. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
101.
101.The Kohn-Sham optimized effective potential (OEP) for exact exchange was defined by J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976). There is a growing literature on the exact-exchange OEP about which an entire review article could itself be written. As this is a technical matter not directly related to functional development, we will not review the OEP literature here.
http://dx.doi.org/10.1103/PhysRevA.14.36
102.
102. G. I. Csonka, J. P. Perdew, and A. Ruzsinszky, J. Chem. Theory Comput. 6, 3688 (2010).
http://dx.doi.org/10.1021/ct100488v
103.
103. T. Van Voorhis and G. E. Scuseria, Mol. Phys. 92, 601 (1997);
http://dx.doi.org/10.1080/00268979709482131
103.T. Van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998).
http://dx.doi.org/10.1063/1.476577
104.
104. A. D. Becke, J. Chem. Phys. 112, 4020 (2000).
http://dx.doi.org/10.1063/1.480951
105.
105. A. D. Becke, J. Chem. Phys. 107, 8554 (1997);
http://dx.doi.org/10.1063/1.475007
105.A. D. Becke, J. Chem. Phys. 109, 2092 (1998).
http://dx.doi.org/10.1063/1.476722
106.
106. H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998);
http://dx.doi.org/10.1063/1.476438
106.H. L. Schmider and A. D. Becke, J. Chem. Phys. 109, 8188 (1998).
http://dx.doi.org/10.1063/1.477481
107.
107. A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002) and references therein.
http://dx.doi.org/10.1063/1.1476309
108.
108. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008);
http://dx.doi.org/10.1007/s00214-007-0310-x
108.Y. Zhao and D. G. Truhlar, Chem. Phys. Lett. 502, 1 (2011).
http://dx.doi.org/10.1016/j.cplett.2010.11.060
109.
109. P. M. W. Gill, Aust. J. Chem. 54, 661 (2001).
http://dx.doi.org/10.1071/CH02049
110.
110. B. G. Johnson, C. A. Gonzales, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 221, 100 (1994).
http://dx.doi.org/10.1016/0009-2614(94)87024-1
111.
111. B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 105, 2936 (2001);
http://dx.doi.org/10.1021/jp004262z
111.B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107, 3898 (2003).
http://dx.doi.org/10.1021/jp0221993
112.
112. E. Ruiz, D. R. Salahub, and A. Vela, J. Phys. Chem. 100, 12265 (1996).
http://dx.doi.org/10.1021/jp9533077
113.
113. T. Van Regemorter, M. Guillaume, G. Sini, J. S. Sears, V. Geskin, J.-L. Brédas, D. Beljonne, and J. Cornil, Theor. Chem. Acc. 131, 1273 (2012).
http://dx.doi.org/10.1007/s00214-012-1273-0
114.
114. A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).
115.
115. P. M. W. Gill, R. D. Adamson, and J. A. Pople, Mol. Phys. 88, 1005 (1996).
http://dx.doi.org/10.1080/00268979609484488
116.
116. T. Leiniger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett. 275, 151 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00758-6
117.
117. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001).
http://dx.doi.org/10.1063/1.1383587
118.
118. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
119.
119. O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006).
http://dx.doi.org/10.1063/1.2244560
120.
120. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
121.
121. O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
http://dx.doi.org/10.1063/1.2409292
122.
122. J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008);
http://dx.doi.org/10.1063/1.2834918
122.J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
123.
123. J. Sun, M. Marsman, A. Ruzsinszky, G. Kresse, and J. P. Perdew, Phys. Rev. B 83, 121410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.121410
124.
124. J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G. I. Csonka, G. E. Scuseria, and J. P. Perdew, Phys. Rev. Lett. 111, 106401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106401
125.
125. A. D. Becke, J. Chem. Phys. 119, 2972 (2003);
http://dx.doi.org/10.1063/1.1589733
125.A. D. Becke, J. Chem. Phys. 122, 064101 (2005).
http://dx.doi.org/10.1063/1.1844493
126.
126. R. M. Dickson and A. D. Becke, J. Chem. Phys. 123, 111101 (2005).
http://dx.doi.org/10.1063/1.2035587
127.
127. P. Mori-Sanchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 124, 091102 (2006).
http://dx.doi.org/10.1063/1.2179072
128.
128. A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Phys. 127, 034101 (2007).
http://dx.doi.org/10.1063/1.2749510
129.
129. J. P. Perdew, V. N. Staroverov, J. Tao, and G. E. Scuseria, Phys. Rev. A 78, 052513 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.052513
130.
130. C. A. Jimenez-Hoyos, B. G. Janesko, G. E. Scuseria, V. N. Staroverov, and J. P. Perdew, Mol. Phys. 107, 1077 (2009).
http://dx.doi.org/10.1080/00268970902740555
131.
131. M. M. Odashima and K. Capelle, Phys. Rev. A 79, 062515 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.062515
132.
132. R. Haunschild, M. M. Odashima, G. E. Scuseria, J. P. Perdew, and K. Capelle, J. Chem. Phys. 136, 184102 (2012).
http://dx.doi.org/10.1063/1.4712017
133.
133. F. Liu, E. Proynov, J.-G. Yu, T. R. Furlani, and J. Kong, J. Chem. Phys. 137, 114104 (2012).
http://dx.doi.org/10.1063/1.4752396
134.
134. E. Proynov, Y. Shao, and J. Kong, Chem. Phys. Lett. 493, 381 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.029
135.
135. E. Proynov, F. Liu, and J. Kong, Chem. Phys. Lett. 525–526, 150 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.069
136.
136. E. Proynov, F. Liu, Y. Shao, and J. Kong, J. Chem. Phys. 136, 034102 (2012).
http://dx.doi.org/10.1063/1.3676726
137.
137. F. Sim, A. St-Amant, I. Papai, and D. R. Salahub, J. Am. Chem. Soc. 114, 4391 (1992).
http://dx.doi.org/10.1021/ja00037a055
138.
138. S. Kristyan and P. Pulay, Chem. Phys. Lett. 229, 175 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01027-7
139.
139. B. I. Lundqvist, Y. Andersson, H. Stiao, S. Chan, and D. C. Langreth, Int. J. Quantum Chem. 56, 247 (1995).
http://dx.doi.org/10.1002/qua.560560410
140.
140. J. M. Perez-Jorda and A. D. Becke, Chem. Phys. Lett. 233, 134 (1995).
http://dx.doi.org/10.1016/0009-2614(94)01402-H
141.
141. D. C. Patton and M. R. Pederson, Phys. Rev. A 56, R2495 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.R2495
142.
142. J. M. Perez-Jorda, E. San-Fabian, and A. J. Perez-Jimenez, J. Chem. Phys. 110, 1916 (1999).
http://dx.doi.org/10.1063/1.477858
143.
143. D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.4681
144.
144. Y. Zhang, W. Pan, and W. Yang, J. Chem. Phys. 107, 7921 (1997).
http://dx.doi.org/10.1063/1.475105
145.
145. Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).
http://dx.doi.org/10.1063/1.1424928
146.
146. S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
147.
147. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
148.
148. A. Goerling and M. Levy, Phys. Rev. B 47, 13105 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.13105
148.A. Goerling and M. Levy, Phys. Rev. A 50, 196 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.196
149.
149. Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004);
http://dx.doi.org/10.1021/jp049253v
149.Y. Zhao, B. J. Lynch and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005).
http://dx.doi.org/10.1039/b416937a
150.
150. J. G. Angyan, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.012510
151.
151. S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
152.
152. L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
http://dx.doi.org/10.1021/ct100466k
153.
153. Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.102
154.
154. J. F. Dobson and B. P. Dinte, Chem. Phys. Lett. 76, 1780 (1996).
155.
155. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
156.
156. T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125112
157.
157. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
158.
158. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
159.
159. J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
160.
160. V. R. Cooper, Phys. Rev. B 81, 161104 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161104
161.
161. G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.096102
162.
162. M. Kamiya, T. Tsuneda, and K. Hirao, J. Chem. Phys. 117, 6010 (2002).
http://dx.doi.org/10.1063/1.1501132
163.
163. T. Sato, T. Tsuneda, and K. Hirao, Mol. Phys. 103, 1151 (2005);
http://dx.doi.org/10.1080/00268970412331333474
163.T. Sato, T. Tsuneda and K. Hirao, J. Chem. Phys. 126, 234114 (2007).
http://dx.doi.org/10.1063/1.2747243
164.
164. O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.063004
164.O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010);
http://dx.doi.org/10.1063/1.3521275
164.O. A. Vydrov and T. Van Voorhis, J. Chem. Theory Comput. 8, 1929 (2012).
http://dx.doi.org/10.1021/ct300081y
165.
165. A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).
http://dx.doi.org/10.1063/1.1884601
166.
166. E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).
http://dx.doi.org/10.1063/1.1949201
167.
167. A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 014104 (2006);
http://dx.doi.org/10.1063/1.2139668
167.A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).
http://dx.doi.org/10.1063/1.2795701
168.
168. A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005).
http://dx.doi.org/10.1063/1.2065267
169.
169. E. R. Johnson and A. D. Becke, J. Chem. Phys. 124, 174104 (2006).
http://dx.doi.org/10.1063/1.2190220
170.
170. F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009).
http://dx.doi.org/10.1021/ct800522r
171.
171. F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010);
http://dx.doi.org/10.1021/ct900699r
171.F. O. Kannemann and A. D. Becke, J. Chem. Phys. 136, 034109 (2012).
http://dx.doi.org/10.1063/1.3676064
172.
172. A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010).
http://dx.doi.org/10.1139/V10-073
173.
173. F. O. Kannemann, Doctoral thesis, Dalhousie University, 2013, see http://hdl.handle.net/10222/21434
174.
174. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
175.
175. T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 (2009).
http://dx.doi.org/10.1063/1.3269802
176.
176. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
177.
177. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
http://dx.doi.org/10.1002/jcc.21759
178.
178. J. Rezac, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011);
http://dx.doi.org/10.1021/ct2002946
178.J. Rezac, K. E. Riley and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).
http://dx.doi.org/10.1021/ct200523a
179.
179. T. Risthaus and S. Grimme, J. Chem. Theory Comput. 9, 1580 (2013).
http://dx.doi.org/10.1021/ct301081n
180.
180. A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 137, 054103 (2012).
http://dx.doi.org/10.1063/1.4738961
181.
181. A. Tkatchenko and O. A. Von Lilienfeld, Phys. Rev. B 78, 045116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045116
182.
182. O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
183.
183. A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 138, 054103 (2013).
http://dx.doi.org/10.1063/1.4789421
184.
184. A. Tkatchenko, R. DiStasio Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
185.
185. D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).
http://dx.doi.org/10.1103/PhysRev.82.625
186.
186. F. Furche, Phys. Rev. B 64, 195120 (2001);
http://dx.doi.org/10.1103/PhysRevB.64.195120
186.F. Furche, J. Chem. Phys. 129, 114105 (2008).
http://dx.doi.org/10.1063/1.2977789
187.
187. G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys. 129, 231101 (2008).
http://dx.doi.org/10.1063/1.3043729
188.
188. H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983 (2011).
http://dx.doi.org/10.1021/jz200238f
189.
189. J. G. Ángyan, R. Liu, J. Toulouse, and G. Jansen, J. Chem. Theory Comput. 7, 3116 (2011).
http://dx.doi.org/10.1021/ct200501r
190.
190. A. Hesselmann and A. Goerling, Mol. Phys. 108, 359 (2010);
http://dx.doi.org/10.1080/00268970903476662
190.A. Hesselmann and A. Goerling, Mol. Phys. 109, 2473 (2011).
http://dx.doi.org/10.1080/00268976.2011.614282
191.
191. H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).
http://dx.doi.org/10.1007/s00214-011-1084-8
192.
192. R. J. Bartlett, Mol. Phys. 108, 3299 (2010).
http://dx.doi.org/10.1080/00268976.2010.532818
193.
193. H. Dachsel, R. J. Harrison, and D. A. Dixon, J. Phys. Chem. A 103, 152 (1999).
http://dx.doi.org/10.1021/jp982648s
194.
194. T. Müller, J. Phys. Chem. A 113, 12729 (2009).
http://dx.doi.org/10.1021/jp905254u
195.
195. M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01225-0
196.
196. K. Burke, M. Ernzerhof, and J. P. Perdew, Chem. Phys. Lett. 265, 115 (1997).
http://dx.doi.org/10.1016/S0009-2614(96)01373-5
197.
197. A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 132, 164115 (2010).
http://dx.doi.org/10.1063/1.3380834
198.
198. M. Seidl, Phys. Rev. A 60, 4387 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.4387
199.
199. M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. A 62, 012502 (2000);
http://dx.doi.org/10.1103/PhysRevA.62.012502
199.M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5070
200.
200. A. Mirtschink, M. Seidl, and P. Gori-Giorgi, J. Chem. Theory Comput. 8, 3097 (2012).
http://dx.doi.org/10.1021/ct3003892
201.
201. A. D. Becke, J. Chem. Phys. 138, 074109 (2013);
http://dx.doi.org/10.1063/1.4790598
201.A. D. Becke, J. Chem. Phys. 138, 161101 (2013).
http://dx.doi.org/10.1063/1.4802982
202.
202. P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 111, 4056 (1999).
http://dx.doi.org/10.1063/1.479707
203.
203. D. Peng, X. Hu, D. Devarajan, D. H. Ess, E. R. Johnson, and W. Yang, J. Chem. Phys. 137, 114112 (2012).
http://dx.doi.org/10.1063/1.4749242
204.
204. A. D. Becke, J. Chem. Phys. 139, 021104 (2013).
http://dx.doi.org/10.1063/1.4812926
205.
205. A. V. Arbuznikov and M. Kaupp, J. Chem. Phys. 131, 084103 (2009).
http://dx.doi.org/10.1063/1.3205003
206.
206. F. A. Bulat, M. Levy, and P. Politzer, J. Phys. Chem. A 113, 1384 (2009).
http://dx.doi.org/10.1021/jp809406p
207.
207. A. A. Kananenka, S. V. Kohut, A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Phys. 139, 074112 (2013).
http://dx.doi.org/10.1063/1.4817942
208.
208. A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, J. Chem. Theory Comput. 9, 3959 (2013).
http://dx.doi.org/10.1021/ct4004146
209.
209. N. Oliphant and R. J. Bartlett, J. Chem. Phys. 100, 6550 (1994).
http://dx.doi.org/10.1063/1.467064
210.
210. P. Verma, A. Perera, and R. J. Bartlett, Chem. Phys. Lett. 524, 10 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.017
211.
211. J. P. Perdew and K. Schmidt, in Density-Functional Theory and its Applications to Materials, edited by V. E. Van Doren, K. Van Alsenoy, and P. Geerlings (American Institute of Physics, Melville, NY, 2001).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4869598
Loading
/content/aip/journal/jcp/140/18/10.1063/1.4869598
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/18/10.1063/1.4869598
2014-04-01
2014-09-01

Abstract

Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/18/1.4869598.html;jsessionid=4a8vntlbs1fjw.x-aip-live-02?itemId=/content/aip/journal/jcp/140/18/10.1063/1.4869598&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Fifty years of density-functional theory in chemical physics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4869598
10.1063/1.4869598
SEARCH_EXPAND_ITEM