Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/18/10.1063/1.4875096
1.
1. N. T. Kalyani and S. J. Dhoble, Renew. Sust. Energ. Rev. 16, 2696 (2012).
http://dx.doi.org/10.1016/j.rser.2012.02.021
2.
2. G. Kranzelbinder and G. Leising, Rep. Prog. Phys. 63, 729 (2000).
http://dx.doi.org/10.1088/0034-4885/63/5/201
3.
3. M. Shahid, S. Ul-Islam, and F. Mohammad, J. Clean. Prod. 53, 310 (2013).
http://dx.doi.org/10.1016/j.jclepro.2013.03.031
4.
4. E. Steingruber, Ullm. Enc. Ind. Chem. 19, 55 (2000).
http://dx.doi.org/10.1002/14356007.a14_149
5.
5. M. Irimia-Vladu, E. D. Glowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, Adv. Mater. 24, 375 (2012).
http://dx.doi.org/10.1002/adma.201102619
6.
6. E. D. Glowacki, L. Leonat, G. Voss, M. Bodea, Z. Bozkurt, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, Proc. SPIE 8118, 81180M (2011).
http://dx.doi.org/10.1117/12.892467
7.
7. M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, and S. Bauer, Adv. Funct. Mater. 20, 4069 (2010).
http://dx.doi.org/10.1002/adfm.201001031
8.
8. M. J. Robb, S.-Y. Ku, F. G. Brunetti, and C. J. Hawker, J. Polym. Sci. A1 51, 1263 (2013).
http://dx.doi.org/10.1002/pola.26531
9.
9. M. Klessinger and W. Lüttke, Tetrahedron 19, 315 (1963).
http://dx.doi.org/10.1016/S0040-4020(63)80023-X
10.
10. L. Serrano-Andrés and B. O. Roos, Chem. Eur. J. 3, 717 (1997).
http://dx.doi.org/10.1002/chem.19970030511
11.
11. E. D. Glowacki, G. Voss, L. Leonat, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, Isr. J. Chem. 52, 540 (2012).
http://dx.doi.org/10.1002/ijch.201100130
12.
12. M. Irimia-Vladu, E. D. Glowacki, G. Voss, S. Bauer, and N. S. Sariciftci, Mater. Today 15, 340 (2012).
http://dx.doi.org/10.1016/S1369-7021(12)70139-6
13.
13. E. D. Glowacki, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, J. Mater. Chem. B 1, 3742 (2013).
http://dx.doi.org/10.1039/c3tb20193g
14.
14. E. D. Glowacki, M. Irimia-Vladu, M. Kaltenbrunner, J. Gasiorowski, M. S. White, U. Monkowius, G. Romanazzi, G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Bauer, T. Someya, L. Torsi, and N. S. Sariciftci, Adv. Mater. 25, 1563 (2013).
http://dx.doi.org/10.1002/adma.201204039
15.
15. P. Süsse, M. Steins, and V. Kupcik, Zeitschr. Kristall. 184, 269 (1988).
http://dx.doi.org/10.1524/zkri.1988.184.3-4.269
16.
16. P. Frank, G. Hlawacek, O. Lengyel, A. Satka, C. Teichert, R. Resel, and A. Winkler, Surf. Sci. 601, 2152 (2007).
http://dx.doi.org/10.1016/j.susc.2007.03.018
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4875096 for an Auger spectrum of a deposited indigo film, a thermal desorption spectrum from the steel sample holder, first order temperature correction, pole figures as well as heat of evaporation and desorption energy calculations. [Supplementary Material]
18.
18. A. Winkler, Proc. Phys. 129, 29 (2009).
http://dx.doi.org/10.1007/978-3-540-95930-4_5
19.
19. P. A. Redhead, Vacuum 12, 203 (1962).
http://dx.doi.org/10.1016/0042-207X(62)90978-8
20.
20. T. Haber, S. Müllegger, A. Winkler, and R. Resel, Phys. Rev. B 74, 045419 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045419
21.
21. A. Andreev, G. Matt, C. J. Brabec, H. Sitter, D. Badt, H. Seyringer, and N. S. Sariciftci, Adv. Mater. 12, 629 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<629::AID-ADMA629>3.0.CO;2-S
22.
22. F. Balzer and H.-G. Rubahn, Appl. Phys. Lett. 79, 3860 (2001).
http://dx.doi.org/10.1063/1.1424071
23.
23. C. B. France, P. G. Schroeder, J. C. Forsythe, and B. A. Parkinson, Langmuir 19, 1274 (2003).
http://dx.doi.org/10.1021/la026221v
24.
24. P. Kury, K. R. Roos, D. Thien, S. Möllenbeck, D. Wall, M. Horn-von Hoegen, and F.-J. Meyer zu Heringdorf, Org. Electr. 9, 461 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.02.006
25.
25. S. Müllegger, I. Salzmann, R. Resel, and A. Winkler, Appl. Phys. Lett. 83, 4536 (2003).
http://dx.doi.org/10.1063/1.1631380
26.
26. L. Kilian, E. Umbach, and M. Sokolowski, Surf. Sci. 573, 359 (2004).
http://dx.doi.org/10.1016/j.susc.2004.10.004
27.
27. M. Möbus and N. Karl, Thin Solid Films 215, 213 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90440-M
28.
28. A. Bondi, J. Phys. Chem. C 68, 441 (1964).
http://dx.doi.org/10.1021/j100785a001
29.
29. P. Jakob and D. Menzel, Surf. Sci. 220, 70 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90464-0
30.
30. G. Koller, R. I. R. Blyth, S. A. Sardar, F. P. Netzer, and M. G. Ramsey, Surf. Sci. 536, 155 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00592-2
31.
31. B. Scherwitzl, W. Lukesch, A. Hirzer, J. Albering, G. Leising, R. Resel, and A. Winkler, J. Phys. Chem. C 117, 4115 (2013).
http://dx.doi.org/10.1021/jp3122598
32.
32. P. Frank, N. Koch, M. Koini, R. Rieger, K. Müllen, R. Resel, and A. Winkler, Chem. Phys. Lett. 473, 321 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.04.019
33.
33. P. Frank, T. Djuric, M. Koini, I. Salzmann, R. Rieger, K. Müllen, R. Resel, N. Koch, and A. Winkler, J. Phys. Chem. C 114, 6650 (2010).
http://dx.doi.org/10.1021/jp100704v
34.
34. K. J. Laidler, S. Glasstone, and H. Eyring, J. Chem. Phys. 8, 659 (1940).
http://dx.doi.org/10.1063/1.1750736
35.
35. M. Roos, A. Breitruck, H. E. Hoster, and R. J. Behm, Phys. Chem. Chem. Phys. 12, 818 (2010).
http://dx.doi.org/10.1039/b920481d
36.
36. K. R. Paserba and A. J. Gellman, Phys. Rev. Lett. 86, 4338 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4338
37.
37. S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, J. Chem. Phys. 122, 164708 (2005).
http://dx.doi.org/10.1063/1.1883630
38.
38. S. Müllegger, O. Stranik, E. Zojer, and A. Winkler, Appl. Surf. Sci. 221, 184 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00878-X
39.
39. T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science 297, 1850 (2002).
http://dx.doi.org/10.1126/science.1075095
40.
40. V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett. 92, 136104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.136104
41.
41. H. von Eller, Bull. Soc. Chim. Fr. 106, 1433 (1955).
42.
42. E. A. Gribova, G. S. Zhdanov, and G. A. Gol'der, Crystallogr. Rep. 1, 53 (1956).
43.
43. F. Kettner, L. Huter, J. Schafer, K. Roder, U. Purgahn, and H. Krautscheid, Acta Crystallogr., Sect. E: Struct. Rep. Online 67, O2867 (2011).
http://dx.doi.org/10.1107/S1600536811040220
44.
44. P. Süsse and A. Wolf, Naturwissenschaften 67, 453 (1980).
http://dx.doi.org/10.1007/BF00405640
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4875096
Loading
/content/aip/journal/jcp/140/18/10.1063/1.4875096
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/18/10.1063/1.4875096
2014-05-12
2016-09-27

Abstract

Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/18/1.4875096.html;jsessionid=sNAXpIE8eMrGqn2B43oSq4sq.x-aip-live-06?itemId=/content/aip/journal/jcp/140/18/10.1063/1.4875096&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/18/10.1063/1.4875096&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/18/10.1063/1.4875096'
Right1,Right2,Right3,