Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/18/10.1063/1.4876016
1.
1. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
2.
2. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
3.
3. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396 (1979).
http://dx.doi.org/10.1063/1.438728
4.
4. M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).
http://dx.doi.org/10.1016/0009-2614(93)87156-W
5.
5. O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89151-7
6.
6. N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).
http://dx.doi.org/10.1002/qua.560120408
7.
7. I. Roeggen and E. Wisloff-Nilssen, Chem. Phys. Lett. 132, 154 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80099-9
8.
8. H. Koch, A. S. de Meras, and T. B. Pedersen, J. Chem. Phys. 118, 9481 (2003).
http://dx.doi.org/10.1063/1.1578621
9.
9. A. P. Rendell and T. J. Lee, J. Chem. Phys. 101, 400 (1994).
http://dx.doi.org/10.1063/1.468148
10.
10. R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80121-4
11.
11. R. A. Friesner, Annu. Rev. Phys. Chem. 42, 341 (1991).
http://dx.doi.org/10.1146/annurev.pc.42.100191.002013
12.
12. T. J. Martínez and E. A. Carter, Modern Electronic Structure Theory (World Scientific Publishing, Singapore, 1995), Vol. 2, pp. 11321165.
13.
13. F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys. 356, 98 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.10.036
14.
14. E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012).
http://dx.doi.org/10.1063/1.4732310
15.
15. R. M. Parrish, E. G. Hohenstein, T. J. Martínez, and C. D. Sherrill, J. Chem. Phys. 137, 224106 (2012).
http://dx.doi.org/10.1063/1.4768233
16.
16. F. Bell, D. Lambrecht, and M. Head-Gordon, Mol. Phys. 108, 2759 (2010).
http://dx.doi.org/10.1080/00268976.2010.523713
17.
17. U. Benedikt, K.-H. Böhm, and A. A. Auer, J. Chem. Phys. 139, 224101 (2013).
http://dx.doi.org/10.1063/1.4833565
18.
18. E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, and T. J. Martínez, J. Chem. Phys. 137, 221101 (2012).
http://dx.doi.org/10.1063/1.4768241
19.
19. S. Saebø and P. Pulay, Chem. Phys. Lett. 113, 13 (1985).
http://dx.doi.org/10.1016/0009-2614(85)85003-X
20.
20. C. Hampel and H. Werner, J. Chem. Phys. 104, 6286 (1996).
http://dx.doi.org/10.1063/1.471289
21.
21. Z. Rolik, L. Szegedy, I. Ladjánszki, B. Ladóczki, and M. Kállay, J. Chem. Phys. 139, 094105 (2013).
http://dx.doi.org/10.1063/1.4819401
22.
22. C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem. Phys. 139, 134101 (2013).
http://dx.doi.org/10.1063/1.4821834
23.
23. R. M. Parrish, E. G. Hohenstein, N. F. Schunck, C. D. Sherrill, and T. J. Martínez, Phys. Rev. Lett. 111, 132505 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.132505
24.
24. R. M. Parrish, E. G. Hohenstein, T. J. Martínez, and C. D. Sherrill, J. Chem. Phys. 138, 194107 (2013).
http://dx.doi.org/10.1063/1.4802773
25.
25. E. G. Hohenstein, S. I. L. Kokkila, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 138, 124111 (2013).
http://dx.doi.org/10.1063/1.4795514
26.
26. I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, 2009).
27.
27. H. Koch, O. Christiansen, R. Kobayashi, P. Jørgensen, and T. Helgaker, Chem. Phys. Lett. 228, 233 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00898-1
28.
28. T. J. Martínez and E. A. Carter, J. Chem. Phys. 98, 7081 (1993).
http://dx.doi.org/10.1063/1.464751
29.
29. T. J. Martínez and E. A. Carter, J. Chem. Phys. 100, 3631 (1994).
http://dx.doi.org/10.1063/1.466350
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4876016 for proofs of the LS-THC and LS-PTHC factors, molecular geometries, THC grids, and expanded benchmarks. [Supplementary Material]
31.
31. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, J. Chem. Phys. 89, 7382 (1988).
http://dx.doi.org/10.1063/1.455269
32.
32. A. E. DePrince and C. D. Sherrill, J. Chem. Theory Comput. 9, 2687 (2013).
http://dx.doi.org/10.1021/ct400250u
33.
33. J. M. Turney et al., WIREs: Comput. Mol. Sci. 2, 556 (2012).
http://dx.doi.org/10.1002/wcms.93
34.
34. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
35.
35. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
http://dx.doi.org/10.1039/b204199p
36.
36. F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
http://dx.doi.org/10.1063/1.1445115
37.
37. A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
http://dx.doi.org/10.1063/1.454033
38.
38. S. I. L. Kokkila, E. G. Hohenstein, R. M. Parrish, L.-P. Wang, and T. J. Martínez, “Tensor hypercontraction Møller-Plesset perturbation theory: Grid optimization and benchmarks” (unpublished).
39.
39. D. M. Bates, J. R. Smith, and G. S. Tschumper, J. Chem. Theory Comput. 7, 2753 (2011).
http://dx.doi.org/10.1021/ct200176t
40.
40. H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al., MOLPRO, version 2009.1, a package of ab initio programs, 2009, see http://www.molpro.net.
41.
41. M. Schütz, R. Lindh, and H.-J. Werner, Mol. Phys. 96, 719 (1999).
http://dx.doi.org/10.1080/00268979909483008
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/18/10.1063/1.4876016
Loading
/content/aip/journal/jcp/140/18/10.1063/1.4876016
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/18/10.1063/1.4876016
2014-05-13
2016-09-30

Abstract

We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from to , with remarkably low error. Combined with a -transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/18/1.4876016.html;jsessionid=oTj4r_7DPYsWFuOoSP2evZ8L.x-aip-live-03?itemId=/content/aip/journal/jcp/140/18/10.1063/1.4876016&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/18/10.1063/1.4876016&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/18/10.1063/1.4876016'
Right1,Right2,Right3,