Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Schroder and H. Schwarz, Angew. Chem. Int. Ed. Engl. 34, 1973 (1995).
2. J. F. Harrison, Chem. Rev. 100, 679716 (2000).
3. M. Barnes, P. G. Hajigeorgiou, R. Kastai, A. J. Merer, and G. F. Metha, J. Am. Chem. Soc. 117, 2096 (1995).
4. S. M. Mattar and C. Kennedy, Chem. Phys. Lett. 238, 230235 (1995).
5. M. Barnes, A. J. Merer, and G. F. Metha, J. Mol. Spectrosc. 181, 168 (1997).
6. W. H. Hocking, M. C. L. Gerry, and A. J. Merer, Can. J. Phys. 57, 54 (1979).
7. W. J. Balfour, A. J. Merer, H. Niki, B. Simard, and P. A. Hackett, J. Chem. Phys. 99, 3288 (1993).
8. O. Krechkivska and M. D. Morse, J. Phys. Chem. A 117, 13284 (2013).
9. E. W. Schlag, ZEKE Spectroscopy (Cambridge University Press, Cambridge, 1996).
10. C. Y. Ng, Ann. Rev. Phys. Chem. 65, 197224 (2014).
11. J. Harrington and J. C. Weisshaar, J. Chem. Phys. 97, 28092812 (1992).
12. Y.-C. Chang, C.-S. Lam, B. Reed, K.-C. Lau, H. T. Liou, and C. Y. Ng, J. Phys. Chem. A 113, 4242 (2009).
13. H. Huang, Y.-C. Chang, Z. Luo, X. Shi, C-S. Lam, K.-C. Lau, and C. Y. Ng, J. Chem. Phys. 138, 094301 (2013).
14. H. Huang, Z. Luo, Y.-C. Chang, K.-C. Lau, and C. Y. Ng, J. Chem. Phys. 138, 174309 (2013).
15. H. Huang, Z. Luo, Y.-C. Chang, K.-C. Lau, and C. Y. Ng, Chin. J. Chem. Phys. 26, 669 (2013).
16. Y.-C. Chang, Z. Zhang, Z. Luo, Y.-N. Song, Q. Z. Yin, and C. Y. Ng, “State-to-state photoionization dynamics of vanadium carbide by two-color laser photoionization and photoelectron methods” (unpublished).
17. R. H. Page and S. Gudeman, J. Opt. Soc. Am. B 7, 1761 (1990).
18. K.-C. Lau and C. Y. Ng, Acc. Chem. Res. 39, 823829 (2006).
19. N. Aristov and P. B. Armentrout, J. Am. Chem. Soc. 106, 4065 (1984);
19.N. Aristov and P. B. Armentrout, J. Am. Chem. Soc. 108, 1806 (1986).
20. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).
21. P. Wang, X. Xing, K.-C. Lau, H. K. Woo, and C. Y. Ng, J. Chem. Phys. 121, 7049 (2004).
22. X. Xing, P. Wang, B. Reed, S. J. Baek, and C. Y. Ng, J. Phys. Chem. A 112, 9277 (2008).

Data & Media loading...


Article metrics loading...



By employing the infrared (IR)-ultraviolet (UV) laser excitation scheme, we have obtained rotationally selected and resolved pulsed field ionization-photoelectron (PFI-PE) spectra for vanadium methylidyne cation (VCH+). This study supports that the ground state electronic configuration for VCH+ is …7σ2241 2Σ+), and is different from that of …7σ2241 ( 2Δ) for the isoelectronic TiO+ and VN+ ions. This observation suggests that the addition of an H atom to vanadium carbide (VC) to form VCH has the effect of stabilizing the 9σ orbital relative to the 1δ orbital. The analysis of the state-to-state IR-UV-PFI-PE spectra has provided precise values for the ionization energy of VCH, IE(VCH) = 54 641.9 ± 0.8 cm−1 (6.7747 ± 0.0001 eV), the rotational constant = 0.462 ± 0.002 cm−1, and the v + bending (626 ± 1 cm−1) and v + V–CH stretching (852 ± 1 cm−1) vibrational frequencies for VCH+( 2Σ+). The IE(VCH) determined here, along with the known IE(V) and IE(VC), allows a direct measure of the change in dissociation energy for the V–CH as well as the VC–H bond upon removal of the 1δ electron of VCH( 3Δ). The formation of VCH+( 2Σ+) from VCH( 3Δ) by photoionization is shown to strengthen the VC–H bond by 0.3559 eV, while the strength of the V–CH bond remains nearly unchanged. This measured change of bond dissociation energies reveals that the highest occupied 1δ orbital is nonbonding for the V–CH bond; but has anti-bonding or destabilizing character for the VC–H bond of VCH( 3Δ).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd