1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/19/10.1063/1.4873343
1.
1. A. Farkas, Orthohydrogen, Parahydrogen and Heavy Hydrogen (Cambdrige University Press, 1935), p. 216.
2.
2. P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, 1998), p. 752.
3.
3. M. J. Mumma, H. A. Weaver, and H. P. Larson, Astron. Astropyphys. 187, 419 (1987).
4.
4. J. Crovisier, Science 275, 1904 (1997).
http://dx.doi.org/10.1126/science.275.5308.1904
5.
5. D. C. Lis, T. G. Phillips, P. F. Goldsmith, D. A. Neufeld, E. Herbst, C. Comito, P. Schilke, H. S. P. Müller, E. A. Bergin, M. Gerin, T. A. Bell, M. Emprechtinger, J. H. Black, G. A. Blake, F. Boulanger, E. Caux, C. Ceccarelli, J. Cernicharo, A. Coutens, N. R. Crockett, F. Daniel, E. Dartois, M. De Luca, M.-L. Dubernet, P. Encrenaz, E. Falgarone, T. R. Geballe, B. Godard, T. F. Giesen, J. R. Goicoechea, C. Gry, H. Gupta, P. Hennebelle, P. Hily-Blant, R. Kołos, J. Krełowski, C. Joblin, D. Johnstone, M. Kaźmierczak, S. D. Lord, S. Maret, P. G. Martin, J. Martín-Pintado, G. J. Melnick, K. M. Menten, R. Monje, B. Mookerjea, P. Morris, J. A. Murphy, V. Ossenkopf, J. C. Pearson, M. Pérault, C. Persson, R. Plume, S.-L. Qin, M. Salez, S. Schlemmer, M. Schmidt, P. Sonnentrucker, J. Stutzki, D. Teyssier, N. Trappe, F. F. S. van der Tak, C. Vastel, S. Wang, H. W. Yorke, S. Yu, J. Zmuidzinas, A. Boogert, N. Erickson, A. Karpov, J. Kooi, F. W. Maiwald, R. Schieder, and P. Zaal, Astron. Astropyphys. 521, L26 (2010).
http://dx.doi.org/10.1051/0004-6361/201015072
6.
6. M. Emprechtinger, D. C. Lis, T. Bell, T. G. Phillips, P. Schilke, C. Comito, R. Rolffs, F. van der Tak, C. Ceccarelli, H. Aarts, A. Bacmann, A. Baudry, M. Benedettini, E. A. Bergin, G. Blake, A. Boogert, S. Bottinelli, S. Cabrit, P. Caselli, A. Castets, E. Caux, J. Cernicharo, C. Codella, A. Coutens, N. Crimier, K. Demyk, C. Dominik, P. Encrenaz, E. Falgarone, A. Fuente, M. Gerin, P. Goldsmith, F. Helmich, P. Hennebelle, T. Henning, E. Herbst, P. Hily-Blant, T. Jacq, C. Kahane, M. Kama, A. Klotz, J. Kooi, W. Langer, B. Lefloch, A. Loose, S. Lord, A. Lorenzani, S. Maret, G. Melnick, D. Neufeld, B. Nisini, V. Ossenkopf, S. Pacheco, L. Pagani, B. Parise, J. Pearson, C. Risacher, M. Salez, P. Saraceno, K. Schuster, J. Stutzki, X. Tielens, M. van der Wiel, C. Vastel, S. Viti, V. Wakelam, A. Walters, F. Wyrowski, and H. Yorke, Astron. Astropyphys. 521, L28 (2010).
http://dx.doi.org/10.1051/0004-6361/201015086
7.
7. T. Kravchuk, M. Reznikov, P. Tichonov, N. Avidor, Y. Meir, A. Bekkerman, and G. Alexandrowicz, Science 331, 319 (2011).
http://dx.doi.org/10.1126/science.1200433
8.
8. V. I. Tikhonov and A. A. Volkov, Science 296, 2363 (2002).
http://dx.doi.org/10.1126/science.1069513
9.
9. S. L. Veber, E. G. Bagryanskaya, and P. L. Chapovsky, J. Exp. Theor. Phys. 102, 76 (2006).
http://dx.doi.org/10.1134/S1063776106010092
10.
10. R. L. Redington and D. E. Milligan, J. Chem. Phys. 39, 1276 (1963).
http://dx.doi.org/10.1063/1.1734427
11.
11. M. E. Fajardo, S. Tam, and M. E. DeRose, J. Mol. Struct. 695–696, 111 (2004).
http://dx.doi.org/10.1016/j.molstruc.2003.11.043
12.
12. R. Sliter, M. Gish, and A. F. Vilesov, J. Phys. Chem. A 115, 9682 (2011).
http://dx.doi.org/10.1021/jp201125k
13.
13. J. Tennyson, J. Phys. Chem. Ref. Data 30, 735 (2001).
http://dx.doi.org/10.1063/1.1364517
14.
14. G. Buntkowsky, H.-H. Limbach, B. Walaszek, A. Adamczyk, Y. Xu, H. Breitzke, A. Schweitzer, T. Gutmann, M. Wächtler, N. Amadeu, D. Tietze, and B. Chaudret, Z. Phys. Chem. 222, 1049 (2008).
http://dx.doi.org/10.1524/zpch.2008.5359
15.
15. Z.-D. Sun, K. Takagi, and F. Matsushima, Science 310, 1938 (2005).
http://dx.doi.org/10.1126/science.1120037
16.
16. V. V. Zhivonitko, K. V. Kovtunov, P. L. Chapovsky, and I. V. Koptyug, Angew. Chem., Int. Ed. 52, 13251 (2013).
http://dx.doi.org/10.1002/anie.201307389
17.
17. P. L. Chapovsky, V. V. Zhivonitko, and I. V. Koptyug, J. Phys. Chem. A 117, 9673 (2013).
http://dx.doi.org/10.1021/jp312322f
18.
18. K. Tomita, Phys. Rev. 89, 429 (1953).
http://dx.doi.org/10.1103/PhysRev.89.429
19.
19. M. Miki and T. Momose, Low Temp. Phys. 26, 661 (2000).
http://dx.doi.org/10.1063/1.1312392
20.
20. Y. Miyamoto, M. Fushitani, D. Ando, and T. Momose, J. Chem. Phys. 128, 114502 (2008).
http://dx.doi.org/10.1063/1.2889002
21.
21. Y. Ji, J. A. Hamida, and N. S. Sullivan, J. Low Temp. Phys. 158, 509 (2009).
http://dx.doi.org/10.1007/s10909-009-0009-6
22.
22. J. Haupt, Phys. Lett. A 38, 389 (1972).
http://dx.doi.org/10.1016/0375-9601(72)90219-8
23.
23. A. Horsewill, Prog. Nucl. Magn. Reson. Spectrosc. 35, 359 (1999).
http://dx.doi.org/10.1016/S0079-6565(99)00016-3
24.
24. M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012).
http://dx.doi.org/10.1016/j.jmr.2012.03.021
25.
25. B. Meier, J.-N. Dumez, G. Stevanato, J. T. Hill-Cousins, S. S. Roy, P. Håkansson, S. Mamone, R. C. D. Brown, G. Pileio, and M. H. Levitt, J. Am. Chem. Soc. 135, 18746 (2013).
http://dx.doi.org/10.1021/ja410432f
26.
26. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2645
27.
27. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987).
http://dx.doi.org/10.1021/ja00252a049
28.
28. T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, and A. L. Balch, J. Am. Chem. Soc. 109, 8089 (1987).
http://dx.doi.org/10.1021/ja00260a026
29.
29. M. G. Pravica and D. P. Weitekamp, Chem. Phys. Lett. 145, 255 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80002-2
30.
30. J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997).
http://dx.doi.org/10.1016/S0079-6565(97)00007-1
31.
31. M. Carravetta, O. Johannessen, and M. Levitt, Phys. Rev. Lett. 92, 153003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.153003
32.
32. M. Carravetta and M. H. Levitt, J. Am. Chem. Soc. 126, 6228 (2004).
http://dx.doi.org/10.1021/ja0490931
33.
33. M. Carravetta and M. H. Levitt, J. Chem. Phys. 122, 214505 (2005).
http://dx.doi.org/10.1063/1.1893983
34.
34. S. Cavadini, J. Dittmer, S. Antonijevic, and G. Bodenhausen, J. Am. Chem. Soc. 127, 15744 (2005).
http://dx.doi.org/10.1021/ja052897b
35.
35. R. Sarkar, P. R. Vasos, and G. Bodenhausen, J. Am. Chem. Soc. 129, 328 (2007).
http://dx.doi.org/10.1021/ja0647396
36.
36. M. H. Levitt, Annu. Rev. Phys. Chem. 63, 89 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143724
37.
37. W. S. Warren, E. Jenista, R. T. Branca, and X. Chen, Science 323, 1711 (2009).
http://dx.doi.org/10.1126/science.1167693
38.
38. P. R. Vasos, A. Comment, R. Sarkar, P. Ahuja, S. Jannin, J.-P. Ansermet, J. A. Konter, P. Hautle, B. van den Brandt, and G. Bodenhausen, Proc. Natl. Acad. Sci. U.S.A. 106, 18469 (2009).
http://dx.doi.org/10.1073/pnas.0908123106
39.
39. S. J. Devience, R. L. Walsworth, and M. S. Rosen, NMR Biomed. 26, 1204 (2013).
http://dx.doi.org/10.1002/nbm.2936
40.
40. K. Kurotobi and Y. Murata, Science 333, 613 (2011).
http://dx.doi.org/10.1126/science.1206376
41.
41. A. Krachmalnicoff, M. H. Levitt, and R. J. Whitby, “An optimised scalable synthesis of H2O@C60 and a new synthesis of H2@C60” (unpublished).
42.
42. C. Beduz, M. Carravetta, J. Y.-C. Chen, M. Concistrè, M. Denning, M. Frunzi, A. J. Horsewill, O. G. Johannessen, R. Lawler, X. Lei, M. H. Levitt, Y. Li, S. Mamone, Y. Murata, U. Nagel, T. Nishida, J. Ollivier, S. Rols, T. Rõõm, R. Sarkar, N. J. Turro, and Y. Yang, Proc. Natl. Acad. Sci. U.S.A. 109, 12894 (2012).
http://dx.doi.org/10.1073/pnas.1210790109
43.
43. L. Abouaf-Marguin, A.-M. Vasserot, C. Pardanaud, and X. Michaut, Chem. Phys. Lett. 480, 82 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.071
44.
44. M. Hiller, E. V. Lavrov, and J. Weber, Phys. Rev. Lett. 98, 055504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.055504
45.
45. M. Concistrè, S. Mamone, M. Denning, G. Pileio, X. Lei, Y. Li, M. Carravetta, N. J. Turro, and M. H. Levitt, Philos. Trans. R. Soc. A 371, 20120102 (2013).
http://dx.doi.org/10.1098/rsta.2012.0102
46.
46. K. Motizuki and T. Nagamiya, J. Phys. Soc. Jpn. 11, 93 (1956).
http://dx.doi.org/10.1143/JPSJ.11.93
47.
47. F. Schmidt, Phys. Rev. B 10, 4480 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.4480
48.
48. I. Silvera, Rev. Mod. Phys. 52, 393 (1980).
http://dx.doi.org/10.1103/RevModPhys.52.393
49.
49. A. Driessen, E. van der Poll, and I. Silvera, Phys. Rev. B 30, 2517 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.2517
50.
50. S. Hartmann and E. Hahn, Phys. Rev. 128, 2042 (1962).
http://dx.doi.org/10.1103/PhysRev.128.2042
51.
51. A. Pines, J. Chem. Phys. 59, 569 (1973).
http://dx.doi.org/10.1063/1.1680061
52.
52. R. Tycko, R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass, and A. M. Mujsce, J. Phys. Chem. 95, 518 (1991).
http://dx.doi.org/10.1021/j100155a006
53.
53. M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johannessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J. Horsewill, A. Samoson, M. Murata, Y. Murata, K. Komatsu, and M. H. Levitt, Phys. Chem. Chem. Phys. 9, 4879 (2007).
http://dx.doi.org/10.1039/b707075f
54.
54. M. Levitt, Spin Dynamics. Basics of Nuclear Magnetic Resonance, 2nd ed. (John Wiley and Sons, Chichester, 2008), p. 744.
55.
55. P. W. Fowler, P. Lazzeretti, M. Malagoli, and R. Zanasi, J. Phys. Chem. 95, 6404 (1991).
http://dx.doi.org/10.1021/j100170a003
56.
56. K. Komatsu, M. Murata, and Y. Murata, Science 307, 238 (2005).
http://dx.doi.org/10.1126/science.1106185
57.
57. R. Sarkar, M. Concistrè, O. G. Johannessen, P. Beckett, M. Denning, M. Carravetta, M. Al-Mosawi, C. Beduz, Y. Yang, and M. H. Levitt, J. Magn. Reson. 212, 460 (2011).
http://dx.doi.org/10.1016/j.jmr.2011.08.021
58.
58. J. Sethnna, Statistical Mechanics: Entropy, Order Parameters and Complexity (Oxford University Press, Oxford, 2006), p. 376.
59.
59. W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides, Europhys. Lett. 18, 219 (1992).
http://dx.doi.org/10.1209/0295-5075/18/3/006
60.
60. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996), p. 965.
61.
61. R. Oyarzun and J. Van Kranendonk, Can. J. Phys. 50, 1494 (1972).
http://dx.doi.org/10.1139/p72-205
62.
62. J. Van Kranendonk, Solid Hydrogen: Theory and Properties of Solid H2, HD and D2 (Springer, 1983).
63.
63. A. J. Horsewill and C. Sun, J. Magn. Reson. 199, 10 (2009).
http://dx.doi.org/10.1016/j.jmr.2009.03.013
64.
64. A. Berlinsky and W. Hardy, Phys. Rev. B 8, 5013 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.5013
65.
65. R. F. Curl, J. Chem. Phys. 46, 3220 (1967).
http://dx.doi.org/10.1063/1.1841193
66.
66. P. Cacciani, J. Cosléou, and M. Khelkhal, Phys. Rev. A 85, 012521 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.012521
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/19/10.1063/1.4873343
Loading
/content/aip/journal/jcp/140/19/10.1063/1.4873343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/19/10.1063/1.4873343
2014-05-20
2015-09-03

Abstract

The water-endofullerene HO@C provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the and species of the endohedral HO was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring and molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral HO molecules is catalysed by 13C nuclei present in the cages.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/19/1.4873343.html;jsessionid=3rgb7sde1bnv1.x-aip-live-02?itemId=/content/aip/journal/jcp/140/19/10.1063/1.4873343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/19/10.1063/1.4873343
10.1063/1.4873343
SEARCH_EXPAND_ITEM