Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/19/10.1063/1.4878094
1.
1. I. M. Campbell, Energy and the Atmosphere (Wiley, London, 1977).
2.
2. D. L. Baulch, C. J. Cobs, R. A. Cox, C. E. P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21, 411 (1992), and references therein.
http://dx.doi.org/10.1063/1.555908
3.
3. D. C. Clary, Phys. Chem. Chem. Phys. 1, 1173 (1999).
http://dx.doi.org/10.1039/a808184k
4.
4. B. Kerkeni and D. C. Clary, J. Phys. Chem. A 107, 10851 (2003).
http://dx.doi.org/10.1021/jp0303725
5.
5. R. Sayos, J. Hernando, M. P. Puyuelo, P. A. Enriquez, and M. Gonzalez, Chem. Phys. Lett. 341, 608 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00518-8
6.
6. R. Martinez, P. A. Enriquez, M. P. Puyuelo, and M. Gonzalez, J. Phys. Chem. A 116, 5026 (2012).
http://dx.doi.org/10.1021/jp303914x
7.
7. E. Gonzalez-Lavado, J. C. Corchado, and J. Espinosa-Garcia, J. Chem. Phys. 140, 064310 (2014).
http://dx.doi.org/10.1063/1.4864358
8.
8. F. Huarte-Larranaga and U. Manthe, J. Chem. Phys. 117, 4635 (2002).
http://dx.doi.org/10.1063/1.1503309
9.
9. H.-G. Yu and G. Nyman, J. Chem. Phys. 112, 238 (2000).
http://dx.doi.org/10.1063/1.480576
10.
10. M. Yang, S.-Y. Lee, and D. H. Zhang, J. Chem. Phys. 126, 064303 (2007).
http://dx.doi.org/10.1063/1.2434171
11.
11. Q. Cui, M.-L. Wang, and J. Z. H. Zhang, Chem. Phys. Lett. 410, 115 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.05.043
12.
12. Y. Li, Y. V. Suleimanov, M. Yang, W. H. Green, and H. Guo, J. Phys. Chem. Lett. 4, 48 (2013).
http://dx.doi.org/10.1021/jz3019513
13.
13. T. Suzuki and E. Hirota, J. Chem. Phys. 98, 2387 (1993).
http://dx.doi.org/10.1063/1.464166
14.
14. G. M. Sweeney, A. Watson, and K. G. McKendrick, J. Chem. Phys. 106, 9172 (1997).
http://dx.doi.org/10.1063/1.474021
15.
15. D. J. Garton, T. K. Minton, D. Troya, R. Pascual, and G. C. Schatz, J. Phys. Chem. A 107, 4583 (2003).
http://dx.doi.org/10.1021/jp0226026
16.
16. D. Troya, G. C. Schatz, D. J. Garton, A. L. Brunsvold, and T. K. Minton, J. Chem. Phys. 120, 731 (2004).
http://dx.doi.org/10.1063/1.1631254
17.
17. J. Zhang and K. Liu, Chem. Asian J. 6, 3132 (2011).
http://dx.doi.org/10.1002/asia.201100414
18.
18. B. Zhang and K. Liu, J. Phys. Chem. A 109, 6791 (2005).
http://dx.doi.org/10.1021/jp052963w
19.
19. F. Wang and K. Liu, Chem. Sci. 1, 126 (2010).
http://dx.doi.org/10.1039/c0sc00186d
20.
20. W. Yan, F. Meng, and D. Wang, J. Phys. Chem. A 117, 12236 (2013).
http://dx.doi.org/10.1021/jp4090298
21.
21. G. Czako and J. M. Bowman, Proc. Natl. Acad. Sci. U.S.A. 109, 7997 (2012).
http://dx.doi.org/10.1073/pnas.1202307109
22.
22. G. Czako, R. Liu, M. Yang, J. M. Bowman, and H. Guo, J. Phys. Chem. A 117, 6409 (2013).
http://dx.doi.org/10.1021/jp4038107
23.
23. R. Liu, M. Yang, G. Czako, J. M. Bowman, J. Li, and Hua Guo, J. Phys. Chem. Lett. 3, 3776 (2012).
http://dx.doi.org/10.1021/jz301735m
24.
24. R. D. Levine, J. Phys. Chem. 94, 8872 (1990).
http://dx.doi.org/10.1021/j100389a006
25.
25. J. Riedel, S. Yan, H. Kawamata, and K. Liu, Rev. Sci. Instrum. 79, 033105 (2008).
http://dx.doi.org/10.1063/1.2894211
26.
26. W. Shiu, J. J. Lin, K. Liu, M. Wu, and D. J. Parker, J. Chem. Phys. 120, 117 (2004).
http://dx.doi.org/10.1063/1.1629668
27.
27. W. Shiu, J. J. Lin, and K. Liu, Phys. Rev. Lett. 92, 103201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.103201
28.
28. J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
http://dx.doi.org/10.1063/1.1561604
29.
29. W. Zhang, H. Kawamata, and K. Liu, Science 325, 303 (2009).
http://dx.doi.org/10.1126/science.1175018
30.
30. H. Kawamata, W. Zhang, and K. Liu, Faraday Discuss. 157, 89 (2012).
http://dx.doi.org/10.1039/c2fd20004j
31.
31. Y. Cheng, H. Pan, F. Wang, and K. Liu, Phys. Chem. Chem. Phys. 16, 444 (2014).
http://dx.doi.org/10.1039/c3cp53036a
32.
32. D. M. Sonnenfroh and K. Liu, Chem. Phys. Lett. 176, 183 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90152-Y
33.
33. Y.-T. Hsu, J.-H. Wang, and K. Liu, J. Chem. Phys. 107, 2351 (1997).
http://dx.doi.org/10.1063/1.474579
34.
34. K. Liu, Intern. Rev. Phys. Chem. 20, 189 (2001).
http://dx.doi.org/10.1080/01442350110034057
35.
35. J. Li, B. Jiang, and H. Guo, J. Am. Chem. Soc. 135, 982 (2013).
http://dx.doi.org/10.1021/ja311159j
36.
36. Z. Zhang, Y. Zhou, D. H. Zhang, G. Czako, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
37.
37. S. Yan, Y.-T. Wu, B. Zhang, X. F. Yue, and K. Liu, Science 316, 1723 (2007).
http://dx.doi.org/10.1126/science.1142313
38.
38. S. Yan, Y.-T. Wu, and K. Liu, Proc. Natl. Acad. Sci. U.S.A. 105, 12667 (2008).
http://dx.doi.org/10.1073/pnas.0800220105
39.
39. F. Wang, J.-S. Lin, Y. Cheng, and K. Liu, J. Phys. Chem. Lett. 4, 323 (2013).
http://dx.doi.org/10.1021/jz302017e
40.
40. H. Kawamata and K. Liu, J. Chem. Phys. 133, 124304 (2010).
http://dx.doi.org/10.1063/1.3482628
41.
41. J. Riedel, S. Yan, and K. Liu, J. Phys. Chem. A 113, 14270 (2009).
http://dx.doi.org/10.1021/jp902629h
42.
42. B. Jiang and H. Guo, J. Chem. Phys. 138, 234104 (2013).
http://dx.doi.org/10.1063/1.4810007
43.
43. B. Jiang and H. Guo, J. Am. Chem. Soc. 135, 15251 (2013).
http://dx.doi.org/10.1021/ja408422y
44.
44. B. Jiang, R. Liu, J. Li, D. Xie, M. Yang, and H. Guo, Chem. Sci. 4, 3249 (2013).
http://dx.doi.org/10.1039/c3sc51040a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/19/10.1063/1.4878094
Loading
/content/aip/journal/jcp/140/19/10.1063/1.4878094
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/19/10.1063/1.4878094
2014-05-15
2016-12-08

Abstract

Effects of one-quantum excitation of the antisymmetric-stretching mode of CH( = 1) on the O(3P) + CH reaction were studied in a crossed-beam, ion-imaging experiment. In the post-threshold region, we found that (1) the product state distributions are dominated by the CH(0) + OH( = 1) pair, (2) the product angular distributions extend toward sideways from the backward dominance of the ground-state reaction, and (3) vibrational excitation exerts a positive effect on reactivity, but translational energy is more efficient in promoting the rate of this central-barrier reaction. All major findings agree reasonably well with recent theoretical results. Some remaining questions are pointed out.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/19/1.4878094.html;jsessionid=sv3nUWZQeczhWEx7E9R7qhwX.x-aip-live-02?itemId=/content/aip/journal/jcp/140/19/10.1063/1.4878094&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/19/10.1063/1.4878094&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/19/10.1063/1.4878094'
Right1,Right2,Right3,