Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/19/10.1063/1.4878735
1.
1. D. Deng, M. G. Kim, J. Y. Lee, and J. Cho, Energy Environ. Sci. 2, 818 (2009).
http://dx.doi.org/10.1039/B823474D
2.
2. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Electrochem. Solid-State Lett. 4, A137 (2001).
http://dx.doi.org/10.1149/1.1388178
3.
3. K. E. Aifantis and J. P. Dempsey, J. Power Sources 143, 203 (2005).
http://dx.doi.org/10.1016/j.jpowsour.2004.11.037
4.
4. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Chem. Mater. 17, 3297 (2005).
http://dx.doi.org/10.1021/cm048003o
5.
5. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, and J. Z. Jiang, J. Am. Chem. Soc. 132, 46 (2010).
http://dx.doi.org/10.1021/ja909321d
6.
6. A. Busch and R. Kern, Solid State Phys. 11, 1 (1961).
7.
7. R. Ravelo and M. Baskes, Phys. Rev. Lett. 79, 2482 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2482
8.
8. P. Pavone, S. Baroni, and S. de Gironcoli, Phys. Rev. B 57, 10421 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.10421
9.
9. P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085104
10.
10. P. Kaghazchi, J. Chem. Phys. 138, 054706 (2013).
http://dx.doi.org/10.1063/1.4789525
11.
11. P. Kaghazchi, J. Phys.: Condens. Matter 25, 382204 (2013).
http://dx.doi.org/10.1088/0953-8984/25/38/382204
12.
12. A. Aguado, Phys. Rev. B 67, 212104 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.212104
13.
13. Y. Yu, L. Gu, C. Zhu, P. A. van Aken, and J. Maier, J. Am. Chem. Soc. 131(44), 15984 (2009).
http://dx.doi.org/10.1021/ja906261c
14.
14. Y. Zou and Y. Wang, ACS Nano 5(10), 8108 (2011).
http://dx.doi.org/10.1021/nn2027159
15.
15. H. S. Im, Y. J. Cho, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, F. Shojaei, and H. S. Kang, ACS Nano 7(12), 11103 (2013).
http://dx.doi.org/10.1021/nn404837d
16.
16. C. Verdozzi, P. A. Schultz, R. Q. Wu, A. H. Edwards, and N. Kioussis, Phys. Rev. B 66, 125408 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125408
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. E. R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935).
http://dx.doi.org/10.1063/1.1749562
19.
19. R. Farrow, D. Robertson, G. Williams, A. Cullis, G. Jones, I. Young, and P. Dennis, J. Cryst. Growth 54, 507 (1981).
http://dx.doi.org/10.1016/0022-0248(81)90506-6
20.
20. W. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989).
21.
21. L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
http://dx.doi.org/10.1063/1.3524336
22.
22. P. Kaghazchi and T. Jacob, Phys. Rev. B 81(7), 075431 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075431
23.
23. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/19/10.1063/1.4878735
Loading
/content/aip/journal/jcp/140/19/10.1063/1.4878735
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/19/10.1063/1.4878735
2014-05-21
2016-12-07

Abstract

Stabilities and structures of β- and α-Sn nanoparticles are studied using density functional theory. Results show that β-Sn nanoparticles are more stable. For both phases of Sn, nanoparticles smaller than 1 nm (∼48 atoms) are amorphous and have a band gap between 0.4 and 0.7 eV. The formation of band gap is found to be due to amorphization. By increasing the size of Sn nanoparticles (1–2.4 nm), the degree of crystallization increases and the band gap decreases. In these cases, structures of the core of nanoparticles are bulk-like, but structures of surfaces on the faces undergo reconstruction. This study suggests a strong size dependence of electronic and atomic structures for Sn nanoparticle anodes in Li-ion batteries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/19/1.4878735.html;jsessionid=zcI18Rm3MI_lVQ-e8oHhcX0v.x-aip-live-02?itemId=/content/aip/journal/jcp/140/19/10.1063/1.4878735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/19/10.1063/1.4878735&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/19/10.1063/1.4878735'
Right1,Right2,Right3,