Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. V. Evans and G. D. Brayer, J. Mol. Biol. 213, 885 (1990).
2. E. R. Henry, W. A. Eaton, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 83, 8982 (1986).
3. J. W. Petrich, C. Poyart, and J. L. Martin, Biochemistry 27, 4049 (1988).
4. J. W. Petrich, J.-C. Lambry, K. Kuezera, M. Karplus, C. Poyart, and J. L. Martin, Biochemistry 30, 3975 (1991).
5. M. H. Lim, T. A. Jackson, and P. A. Anfinrud, J. Phys. Chem. 100, 12043 (1996).
6. Y. Kholodenko, M. Volk, E. Gooding, and R. M. Hochstrasser, Chem. Phys. 259, 71 (2000).
7. X. O. Ye, A. Demidov, F. Rosca, W. Wang, A. Kumar, D. Ionascu, L. Y. Zhu, D. Barrick, D. Wharton, and P. M. Champion, J. Phys. Chem. A 107, 8156 (2003).
8. S. Ishizaka, T. Wada, and N. Kitamura, Photochem. Photobiol. Sci. 8, 562 (2009).
9. F. Adar, M. Gouterman, and S. Aronowitz, J. Phys. Chem. 80, 2184 (1976).
10. B. Steiger, J. S. Baskin, F. C. Anson, and A. H. Zewail, Angew. Chem., Int. Ed. 39, 257 (2000).<257::AID-ANIE257>3.0.CO;2-3
11. S. Sorgues, L. Poisson, K. Raffael, L. Krim, B. Soep, and N. Shafizadeh, J. Chem. Phys. 124, 114302 (2006).
12. M. H. Ha-Thi, N. Shafizadeh, L. Poisson, and B. Soep, Phys. Chem. Chem. Phys. 12, 14985 (2010).
13. O. Bräm, C. Consani, A. Cannizzo, and M. Chergui, J. Phys. Chem. B 115, 13723 (2011).
14. W. X. Cao, J. F. Christian, P. M. Champion, F. Rosca, and J. T. Sage, Biochemistry 40, 5728 (2001).
15. X. Ye, A. Demidov, and P. M. Champion, J. Am. Chem. Soc. 124, 5914 (2002).
16. J. Helbing, L. Bonacina, R. Pietri, J. Bredenbeck, P. Hamm, F. van Mourik, F. Chaussard, A. Gonzalez-Gonzalez, M. Chergui, C. Ramos-Alvarez, C. Ruiz, and J. Lopez-Garriga, Biophys. J. 87, 1881 (2004).
17. J. Helbing, Chem. Phys. 396, 17 (2012).
18. A. Cannizzo, O. Bräm, G. Zgrablic, A. Tortschanoff, A. A. Oskouei, F. van Mourik, and M. Chergui, Opt. Lett. 32, 3555 (2007).
19. G. Zgrablić, K. Voïtchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
20. C. Consani, M. Prémont-Schwarz, A. Elnahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem., Int. Ed. 48, 7184 (2009).
21. C. Consani, O. Bräm, F. van Mourik, A. Cannizzo, and M. Chergui, Chem. Phys. 396, 108 (2012).
22. U. Tripathy, D. Kowalska, X. Liu, S. Velate, and R. P. Steer, J. Phys. Chem. A 112, 5824 (2008).
23. Iron Porphyrins, edited by A. B. P. Lever and H. B. Gray (Addison-Wesley, Reading, MA, 1983), Part 1.
24. P. M. Champion and G. J. Perreault, J. Chem. Phys. 75, 490 (1981).
25. C. Consani, G. Auböck, F. van Mourik, and M. Chergui, Science 339, 1586 (2013).
26. T. Kitagawa, N. Haruta, and Y. Mizutani, Biopolymers 67, 207 (2002).
27. S. G. Kruglik, J. C. Lambry, J. L. Martin, M. H. Vos, and M. Negrerie, J. Raman Spectrosc. 42, 265 (2011).
28. J. Rodriguez, C. Kirmaier, and D. Holten, J. Am. Chem. Soc. 111, 6500 (1989).
29. X. Zhang, E. C. Wasinger, A. Z. Muresan, K. Attenkofer, G. Jennings, J. S. Lindsey, and L. X. Chen, J. Phys. Chem. A 111, 11736 (2007).
30. J. Fajer, D. C. Borg, A. Forman, D. Dolphin, and R. H. Felton, J. Am. Chem. Soc. 92, 3451 (1970).
31. Z. Gasyna, W. R. Browett, and M. J. Stillman, Inorg. Chem. 24, 2440 (1985).
32. C. K. Chang, L. K. Hanson, P. F. Richardson, R. Young, and J. Fajer, Proc. Natl. Acad. Sci. U.S.A. 78, 2652 (1981).
33. M. Zerner and M. Gouterma, Inorg. Chem. 5, 1707 (1966).
34. R. H. Felton, D. Dolphin, D. C. Borg, and J. Fajer, J. Am. Chem. Soc. 91, 196 (1969).
35. D. Dolphin and R. H. Felton, Acc. Chem. Res. 7, 26 (1974).
36. D. C. Lamb, A. Ostermann, V. E. Prusakov, and F. G. Parak, Eur. Biophys. J. 27, 113 (1998).
37. N. Engler, A. Ostermann, A. Gassmann, D. C. Lamb, V. E. Prusakov, J. Schott, R. Schweitzer-Stenner, and F. G. Parak, Biophys. J. 78, 2081 (2000).
38. P. Li, J. T. Sage, and P. M. Champion, J. Chem. Phys. 97, 3214 (1992).
39. M. H. Lim, T. A. Jackson, and P. A. Anfinrud, Ultrafast Phenomena VIII, Springer Series in Chemical Physics 52, 552 (1993).
40. C. Bressler, C. Milne, V.-T. Pham, A. El Nahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
41. F. A. Lima, C. J. Milne, D. C. V. Amarasinghe, M. H. Rittmann-Frank, R. M. van der Veen, M. Reinhard, V.-T. Pham, S. Karlsson, S. L. Johnson, D. Grolimund, C. Borca, T. Huthwelker, M. Janousch, F. van Mourik, and M. Chergui, Rev. Sci. Instrum. 82, 063111 (2011).
42. L. X. Chen, X. Zhang, E. C. Wasinger, K. Attenkofer, A. Z. Jennings, G. Muresan, and J. S. Lindsey, J. Am. Chem. Soc. 129, 9616 (2007).
43. A. S. Rury and R. J. Sension, Chem. Phys. 422, 220 (2013).
44. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, Proc. Natl. Acad. Sci. U.S.A. 101, 13216 (2004).
45.See supplementary material at for details on the experimental procedures, a description of the global analysis procedure, supplementary figures and tables on data analysis and the data upon 288 nm excitation. [Supplementary Material]

Data & Media loading...


Article metrics loading...



We report on a study of the early relaxation processes of met-Myoglobin in aqueous solution, using a combination of ultrafast broadband fluorescence detection and transient absorption with a broad UV-visible continuum probe at different pump energies. Reconstruction of the spectra of the transient species unravels the details of the haem photocycle in the absence of photolysis. Besides identifying a branching in the ultrafast relaxation of the haem, we show clear evidence for an electronic character of the intermediates, contrary to the commonly accepted idea that the early time relaxation of the haem is only due to cooling. The decay back to the ground state proceeds partially as a cascade through iron spin states, which seems to be a general characteristic of haem systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd