Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/2/10.1063/1.4861467
1.
1. S. V. Evans and G. D. Brayer, J. Mol. Biol. 213, 885 (1990).
http://dx.doi.org/10.1016/S0022-2836(05)80270-0
2.
2. E. R. Henry, W. A. Eaton, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 83, 8982 (1986).
http://dx.doi.org/10.1073/pnas.83.23.8982
3.
3. J. W. Petrich, C. Poyart, and J. L. Martin, Biochemistry 27, 4049 (1988).
http://dx.doi.org/10.1021/bi00411a022
4.
4. J. W. Petrich, J.-C. Lambry, K. Kuezera, M. Karplus, C. Poyart, and J. L. Martin, Biochemistry 30, 3975 (1991).
http://dx.doi.org/10.1021/bi00230a025
5.
5. M. H. Lim, T. A. Jackson, and P. A. Anfinrud, J. Phys. Chem. 100, 12043 (1996).
http://dx.doi.org/10.1021/jp9536458
6.
6. Y. Kholodenko, M. Volk, E. Gooding, and R. M. Hochstrasser, Chem. Phys. 259, 71 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00182-8
7.
7. X. O. Ye, A. Demidov, F. Rosca, W. Wang, A. Kumar, D. Ionascu, L. Y. Zhu, D. Barrick, D. Wharton, and P. M. Champion, J. Phys. Chem. A 107, 8156 (2003).
http://dx.doi.org/10.1021/jp0276799
8.
8. S. Ishizaka, T. Wada, and N. Kitamura, Photochem. Photobiol. Sci. 8, 562 (2009).
http://dx.doi.org/10.1039/b814170c
9.
9. F. Adar, M. Gouterman, and S. Aronowitz, J. Phys. Chem. 80, 2184 (1976).
http://dx.doi.org/10.1021/j100561a010
10.
10. B. Steiger, J. S. Baskin, F. C. Anson, and A. H. Zewail, Angew. Chem., Int. Ed. 39, 257 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3773(20000103)39:1<257::AID-ANIE257>3.0.CO;2-3
11.
11. S. Sorgues, L. Poisson, K. Raffael, L. Krim, B. Soep, and N. Shafizadeh, J. Chem. Phys. 124, 114302 (2006).
http://dx.doi.org/10.1063/1.2176612
12.
12. M. H. Ha-Thi, N. Shafizadeh, L. Poisson, and B. Soep, Phys. Chem. Chem. Phys. 12, 14985 (2010).
http://dx.doi.org/10.1039/c0cp00687d
13.
13. O. Bräm, C. Consani, A. Cannizzo, and M. Chergui, J. Phys. Chem. B 115, 13723 (2011).
http://dx.doi.org/10.1021/jp207615u
14.
14. W. X. Cao, J. F. Christian, P. M. Champion, F. Rosca, and J. T. Sage, Biochemistry 40, 5728 (2001).
http://dx.doi.org/10.1021/bi010067e
15.
15. X. Ye, A. Demidov, and P. M. Champion, J. Am. Chem. Soc. 124, 5914 (2002).
http://dx.doi.org/10.1021/ja017359n
16.
16. J. Helbing, L. Bonacina, R. Pietri, J. Bredenbeck, P. Hamm, F. van Mourik, F. Chaussard, A. Gonzalez-Gonzalez, M. Chergui, C. Ramos-Alvarez, C. Ruiz, and J. Lopez-Garriga, Biophys. J. 87, 1881 (2004).
http://dx.doi.org/10.1529/biophysj.103.036236
17.
17. J. Helbing, Chem. Phys. 396, 17 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.04.001
18.
18. A. Cannizzo, O. Bräm, G. Zgrablic, A. Tortschanoff, A. A. Oskouei, F. van Mourik, and M. Chergui, Opt. Lett. 32, 3555 (2007).
http://dx.doi.org/10.1364/OL.32.003555
19.
19. G. Zgrablić, K. Voïtchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
http://dx.doi.org/10.1529/biophysj.104.046094
20.
20. C. Consani, M. Prémont-Schwarz, A. Elnahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem., Int. Ed. 48, 7184 (2009).
http://dx.doi.org/10.1002/anie.200902728
21.
21. C. Consani, O. Bräm, F. van Mourik, A. Cannizzo, and M. Chergui, Chem. Phys. 396, 108 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.09.002
22.
22. U. Tripathy, D. Kowalska, X. Liu, S. Velate, and R. P. Steer, J. Phys. Chem. A 112, 5824 (2008).
http://dx.doi.org/10.1021/jp801395h
23.
23. Iron Porphyrins, edited by A. B. P. Lever and H. B. Gray (Addison-Wesley, Reading, MA, 1983), Part 1.
24.
24. P. M. Champion and G. J. Perreault, J. Chem. Phys. 75, 490 (1981).
http://dx.doi.org/10.1063/1.441846
25.
25. C. Consani, G. Auböck, F. van Mourik, and M. Chergui, Science 339, 1586 (2013).
http://dx.doi.org/10.1126/science.1230758
26.
26. T. Kitagawa, N. Haruta, and Y. Mizutani, Biopolymers 67, 207 (2002).
http://dx.doi.org/10.1002/bip.10096
27.
27. S. G. Kruglik, J. C. Lambry, J. L. Martin, M. H. Vos, and M. Negrerie, J. Raman Spectrosc. 42, 265 (2011).
http://dx.doi.org/10.1002/jrs.2685
28.
28. J. Rodriguez, C. Kirmaier, and D. Holten, J. Am. Chem. Soc. 111, 6500 (1989).
http://dx.doi.org/10.1021/ja00199a004
29.
29. X. Zhang, E. C. Wasinger, A. Z. Muresan, K. Attenkofer, G. Jennings, J. S. Lindsey, and L. X. Chen, J. Phys. Chem. A 111, 11736 (2007).
http://dx.doi.org/10.1021/jp0751763
30.
30. J. Fajer, D. C. Borg, A. Forman, D. Dolphin, and R. H. Felton, J. Am. Chem. Soc. 92, 3451 (1970).
http://dx.doi.org/10.1021/ja00714a038
31.
31. Z. Gasyna, W. R. Browett, and M. J. Stillman, Inorg. Chem. 24, 2440 (1985).
http://dx.doi.org/10.1021/ic00209a025
32.
32. C. K. Chang, L. K. Hanson, P. F. Richardson, R. Young, and J. Fajer, Proc. Natl. Acad. Sci. U.S.A. 78, 2652 (1981).
http://dx.doi.org/10.1073/pnas.78.5.2652
33.
33. M. Zerner and M. Gouterma, Inorg. Chem. 5, 1707 (1966).
http://dx.doi.org/10.1021/ic50044a015
34.
34. R. H. Felton, D. Dolphin, D. C. Borg, and J. Fajer, J. Am. Chem. Soc. 91, 196 (1969).
http://dx.doi.org/10.1021/ja01029a040
35.
35. D. Dolphin and R. H. Felton, Acc. Chem. Res. 7, 26 (1974).
http://dx.doi.org/10.1021/ar50073a005
36.
36. D. C. Lamb, A. Ostermann, V. E. Prusakov, and F. G. Parak, Eur. Biophys. J. 27, 113 (1998).
http://dx.doi.org/10.1007/s002490050117
37.
37. N. Engler, A. Ostermann, A. Gassmann, D. C. Lamb, V. E. Prusakov, J. Schott, R. Schweitzer-Stenner, and F. G. Parak, Biophys. J. 78, 2081 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76755-5
38.
38. P. Li, J. T. Sage, and P. M. Champion, J. Chem. Phys. 97, 3214 (1992).
http://dx.doi.org/10.1063/1.463008
39.
39. M. H. Lim, T. A. Jackson, and P. A. Anfinrud, Ultrafast Phenomena VIII, Springer Series in Chemical Physics 52, 552 (1993).
40.
40. C. Bressler, C. Milne, V.-T. Pham, A. El Nahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
http://dx.doi.org/10.1126/science.1165733
41.
41. F. A. Lima, C. J. Milne, D. C. V. Amarasinghe, M. H. Rittmann-Frank, R. M. van der Veen, M. Reinhard, V.-T. Pham, S. Karlsson, S. L. Johnson, D. Grolimund, C. Borca, T. Huthwelker, M. Janousch, F. van Mourik, and M. Chergui, Rev. Sci. Instrum. 82, 063111 (2011).
http://dx.doi.org/10.1063/1.3600616
42.
42. L. X. Chen, X. Zhang, E. C. Wasinger, K. Attenkofer, A. Z. Jennings, G. Muresan, and J. S. Lindsey, J. Am. Chem. Soc. 129, 9616 (2007).
http://dx.doi.org/10.1021/ja072979v
43.
43. A. S. Rury and R. J. Sension, Chem. Phys. 422, 220 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.01.025
44.
44. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, Proc. Natl. Acad. Sci. U.S.A. 101, 13216 (2004).
http://dx.doi.org/10.1073/pnas.0401844101
45.
45.See supplementary material at http://dx.doi.org/10.1063/1.4861467 for details on the experimental procedures, a description of the global analysis procedure, supplementary figures and tables on data analysis and the data upon 288 nm excitation. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/2/10.1063/1.4861467
Loading
/content/aip/journal/jcp/140/2/10.1063/1.4861467
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/2/10.1063/1.4861467
2014-01-13
2016-12-09

Abstract

We report on a study of the early relaxation processes of met-Myoglobin in aqueous solution, using a combination of ultrafast broadband fluorescence detection and transient absorption with a broad UV-visible continuum probe at different pump energies. Reconstruction of the spectra of the transient species unravels the details of the haem photocycle in the absence of photolysis. Besides identifying a branching in the ultrafast relaxation of the haem, we show clear evidence for an electronic character of the intermediates, contrary to the commonly accepted idea that the early time relaxation of the haem is only due to cooling. The decay back to the ground state proceeds partially as a cascade through iron spin states, which seems to be a general characteristic of haem systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/2/1.4861467.html;jsessionid=BWKBdm0r_A6TRZiuSHLriUZB.x-aip-live-02?itemId=/content/aip/journal/jcp/140/2/10.1063/1.4861467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/2/10.1063/1.4861467&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/2/10.1063/1.4861467'
Right1,Right2,Right3,