Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/20/10.1063/1.4879516
1.
1. F. Frank, C. Arrell, T. Witting, W. A. Okell, J. McKenna, J. S. Robinson, C. A. Haworth, D. Austin, H. Teng, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, Rev. Sci. Instrum. 83(7), 071101 (2012).
http://dx.doi.org/10.1063/1.4731658
2.
2. F. Lepine, G. Sansone, and M. J. J. Vrakking, Chem. Phys. Lett. 578, 114 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.05.045
3.
3. F. Lepine, M. Y. Ivanov, and M. J. J. Vrakking, Nature Photon. 8(3), 195204 (2014).
http://dx.doi.org/10.1038/nphoton.2014.25
4.
4. M. F. Kling and M. J. J. Vrakking, Annu. Rev. Phys. Chem. 59, 463492 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093532
5.
5. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81(1), 163234 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
6.
6. L. S. Cederbaum and J. Zobeley, Chem. Phys. Lett. 307, 205210 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00508-4
7.
7. A. I. Kuleff, S. Lünnemann, and L. S. Cederbaum, Chem. Phys. 399, 245251 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.015
8.
8. A. I. Kuleff, S. Lünnemann, and L. S. Cederbaum, J. Phys. Chem. A 114(33), 86768679 (2010).
http://dx.doi.org/10.1021/jp101256n
9.
9. S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, J. Chem. Phys. 129(10), 104305 (2008).
http://dx.doi.org/10.1063/1.2970088
10.
10. S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, Chem. Phys. Lett. 450(4-6), 232235 (2008).
http://dx.doi.org/10.1016/j.cplett.2007.11.031
11.
11. A. I. Kuleff and L. S. Cederbaum, Chem. Phys. 338(2–3), 320328 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.04.012
12.
12. B. H. Muskatel, F. Remacle, and R. D. Levine, J. Phys. Chem. A 116(46), 1131111318 (2012).
http://dx.doi.org/10.1021/jp305354h
13.
13. B. Mignolet, A. Gijsbertsen, M. J. J. Vrakking, R. D. Levine, and F. Remacle, Phys. Chem. Chem. Phys. 13(18), 83318344 (2011).
http://dx.doi.org/10.1039/c1cp20094a
14.
14. M. Nest, F. Remacle, and R. D. Levine, New J. Phys. 10, 025019 (2008).
http://dx.doi.org/10.1088/1367-2630/10/2/025019
15.
15. F. Remacle, R. Kienberger, F. Krausz, and R. D. Levine, Chem. Phys. 338(2–3), 342347 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.05.012
16.
16. F. Remacle and R. D. Levine, Z. Phys. Chem. 221(5), 647661 (2007).
http://dx.doi.org/10.1524/zpch.2007.221.5.647
17.
17. S. Thallmair, R. Siemering, R. Kölle, M. Kling, and M. Wollen, in Molecular Quantum Dynamics: From Theory to Applications, edited by F. Gatti (Springer, 2014), pp. 211246.
18.
18. D. Mendive-Tapia, M. Vacher, M. J. Bearpark, and M. A. Robb, J. Chem. Phys. 139(4), 044110 (2013);
http://dx.doi.org/10.1063/1.4815914
18.M. Vacher, D. Mendive-Tapia, M. J. Bearpark, and M. A. Robb, “The second order Ehrenfest method: A practical CASSCF approach to coupled electron-nuclear dynamics,” Theor. Chem. Acc. (in press).
http://dx.doi.org/10.1007/s00214-014-1505-6
19.
19. A. I. Kuleff, J. Breidbach, and L. S. Cederbaum, J. Chem. Phys. 123(4), 044111 (2005).
http://dx.doi.org/10.1063/1.1961341
20.
20. A. I. Kuleff, S. Lunnemann, and L. S. Cederbaum, Chem. Phys. 414, 100105 (2013).
http://dx.doi.org/10.1016/j.chemphys.2012.02.019
21.
21. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian Development Version, Revision H.10, Gaussian, Inc., Wallingford, CT, 2010.
22.
22. J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, J. Chem. Phys. 111(9), 38003805 (1999).
http://dx.doi.org/10.1063/1.480037
23.
23. A. V. Nemukhin and F. Weinhold, J. Chem. Phys. 97(2), 10951108 (1992).
http://dx.doi.org/10.1063/1.463289
24.
24. E. D. Glendening, C. R. Landis, and F. Weinhold, Wiley Interdis. Rev.-Comput. Mol. Sci. 2(1), 142 (2012).
http://dx.doi.org/10.1002/wcms.51
25.
25. M. Boggio-Pasqua, M. J. Bearpark, M. Klene, and M. A. Robb, J. Chem. Phys. 120(17), 78497860 (2004).
http://dx.doi.org/10.1063/1.1690756
26.
26. R. S. Muliken, J. Chem. Phys. 23, 18331844 (1955).
http://dx.doi.org/10.1063/1.1740588
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4879516. The data with coupled nuclei, given in Figure S10, have slightly different starting conditions from those in Figure 4 because the orbitals were computed with a second order iteration. This results in differences of 0.04 in the initial spin densities. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/20/10.1063/1.4879516
Loading
/content/aip/journal/jcp/140/20/10.1063/1.4879516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/20/10.1063/1.4879516
2014-05-27
2016-12-08

Abstract

Coupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states. When coupled nuclear motion was allowed (which was mainly NH partial inversion), the oscillations hardly changed. For Gly-Gly-NH-CH, charge migration between the carbonyl oxygens and the NH lone pair can be observed with a period similar to glycine itself, also without interaction with nuclear motion. These simulations suggest that charge migration between lone pairs can occur independently of the nuclear motion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/20/1.4879516.html;jsessionid=poZObLPrf8l2-5GdfkRM5o3K.x-aip-live-02?itemId=/content/aip/journal/jcp/140/20/10.1063/1.4879516&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/20/10.1063/1.4879516&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/20/10.1063/1.4879516'
Right1,Right2,Right3,