Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Frank, C. Arrell, T. Witting, W. A. Okell, J. McKenna, J. S. Robinson, C. A. Haworth, D. Austin, H. Teng, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, Rev. Sci. Instrum. 83(7), 071101 (2012).
2. F. Lepine, G. Sansone, and M. J. J. Vrakking, Chem. Phys. Lett. 578, 114 (2013).
3. F. Lepine, M. Y. Ivanov, and M. J. J. Vrakking, Nature Photon. 8(3), 195204 (2014).
4. M. F. Kling and M. J. J. Vrakking, Annu. Rev. Phys. Chem. 59, 463492 (2008).
5. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81(1), 163234 (2009).
6. L. S. Cederbaum and J. Zobeley, Chem. Phys. Lett. 307, 205210 (1999).
7. A. I. Kuleff, S. Lünnemann, and L. S. Cederbaum, Chem. Phys. 399, 245251 (2012).
8. A. I. Kuleff, S. Lünnemann, and L. S. Cederbaum, J. Phys. Chem. A 114(33), 86768679 (2010).
9. S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, J. Chem. Phys. 129(10), 104305 (2008).
10. S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, Chem. Phys. Lett. 450(4-6), 232235 (2008).
11. A. I. Kuleff and L. S. Cederbaum, Chem. Phys. 338(2–3), 320328 (2007).
12. B. H. Muskatel, F. Remacle, and R. D. Levine, J. Phys. Chem. A 116(46), 1131111318 (2012).
13. B. Mignolet, A. Gijsbertsen, M. J. J. Vrakking, R. D. Levine, and F. Remacle, Phys. Chem. Chem. Phys. 13(18), 83318344 (2011).
14. M. Nest, F. Remacle, and R. D. Levine, New J. Phys. 10, 025019 (2008).
15. F. Remacle, R. Kienberger, F. Krausz, and R. D. Levine, Chem. Phys. 338(2–3), 342347 (2007).
16. F. Remacle and R. D. Levine, Z. Phys. Chem. 221(5), 647661 (2007).
17. S. Thallmair, R. Siemering, R. Kölle, M. Kling, and M. Wollen, in Molecular Quantum Dynamics: From Theory to Applications, edited by F. Gatti (Springer, 2014), pp. 211246.
18. D. Mendive-Tapia, M. Vacher, M. J. Bearpark, and M. A. Robb, J. Chem. Phys. 139(4), 044110 (2013);
18.M. Vacher, D. Mendive-Tapia, M. J. Bearpark, and M. A. Robb, “The second order Ehrenfest method: A practical CASSCF approach to coupled electron-nuclear dynamics,” Theor. Chem. Acc. (in press).
19. A. I. Kuleff, J. Breidbach, and L. S. Cederbaum, J. Chem. Phys. 123(4), 044111 (2005).
20. A. I. Kuleff, S. Lunnemann, and L. S. Cederbaum, Chem. Phys. 414, 100105 (2013).
21. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian Development Version, Revision H.10, Gaussian, Inc., Wallingford, CT, 2010.
22. J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, J. Chem. Phys. 111(9), 38003805 (1999).
23. A. V. Nemukhin and F. Weinhold, J. Chem. Phys. 97(2), 10951108 (1992).
24. E. D. Glendening, C. R. Landis, and F. Weinhold, Wiley Interdis. Rev.-Comput. Mol. Sci. 2(1), 142 (2012).
25. M. Boggio-Pasqua, M. J. Bearpark, M. Klene, and M. A. Robb, J. Chem. Phys. 120(17), 78497860 (2004).
26. R. S. Muliken, J. Chem. Phys. 23, 18331844 (1955).
27.See supplementary material at The data with coupled nuclei, given in Figure S10, have slightly different starting conditions from those in Figure 4 because the orbitals were computed with a second order iteration. This results in differences of 0.04 in the initial spin densities. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Coupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states. When coupled nuclear motion was allowed (which was mainly NH partial inversion), the oscillations hardly changed. For Gly-Gly-NH-CH, charge migration between the carbonyl oxygens and the NH lone pair can be observed with a period similar to glycine itself, also without interaction with nuclear motion. These simulations suggest that charge migration between lone pairs can occur independently of the nuclear motion.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd