Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/21/10.1063/1.4880236
1.
1. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 2006).
2.
2. B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys. 27(5), 12081209 (1957).
http://dx.doi.org/10.1063/1.1743957
3.
3. J. D. Bernal, “Geometry of the structure of monatomic liquids,” Nature (London) 185(4706), 6870 (1960).
http://dx.doi.org/10.1038/185068a0
4.
4. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1992).
5.
5. J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, New York, 2000).
6.
6. M. H. Kalos, D. Levesque, and L. Verlet, “Helium at zero temperature with hard-sphere and other forces,” Phys. Rev. A 9(5), 21782195 (1974).
http://dx.doi.org/10.1103/PhysRevA.9.2178
7.
7. S. Torquato and F. Lado, “Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres,” Phys. Rev. B 33(9), 64286435 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.6428
8.
8. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
9.
9. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002).
10.
10. M. D. Rintoul and S. Torquato, “Metastability and crystallization in hard-sphere systems,” Phys. Rev. Lett. 77(20), 41984201 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4198
11.
11. B. O’Malley and I. Snook, “Crystal nucleation in the hard sphere system,” Phys. Rev. Lett. 90(8), 085702 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.085702
12.
12. W. G. Hoover and F. H. Ree, “Melting transition and communal entropy for hard spheres,” J. Chem. Phys. 49(8), 36093617 (1968).
http://dx.doi.org/10.1063/1.1670641
13.
13. S. Auer and D. Frenkel, “Numerical prediction of absolute crystallization rates in hard-sphere colloids,” J. Chem. Phys. 120(6), 30153029 (2004).
http://dx.doi.org/10.1063/1.1638740
14.
14. M. D. Rintoul and S. Torquato, “Hard-sphere statistics along the metastable amorphous branch,” Phys. Rev. E 58(1), 532537 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.532
15.
15. P. N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, and M. E. Cates, “Hard spheres: Cystallization and glass formation,” Philos. Trans. R. Soc. A 367(1909), 49935011 (2009).
http://dx.doi.org/10.1098/rsta.2009.0181
16.
16. M. S. Wertheim, “Exact solution of the Percus-Yevick integral equation for hard spheres,” Phys. Rev. Lett. 10(8), 321323 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.321
17.
17. M. López de Haro, S. Yuste, and A. Santos, “Alternative approaches to the equilibrium properties of hard-sphere liquids,” in Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lecture Notes in Physics Vol. 753, edited by A. Mulero (Springer, Berlin, 2008), pp. 183245.
18.
18. N. E. Cusak, The Physics of Structurally Disordered Matter (Hilger, Bristol, 1987).
19.
19. A. Donev, S. Torquato, and F. H. Stillinger, “Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings,” Phys. Rev. E 71(1), 011105 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.011105
20.
20. C. D. Estrada and M. Robles, “Fluid-solid transition in hard hypersphere systems,” J. Chem. Phys. 134(4), 044115 (2011).
http://dx.doi.org/10.1063/1.3530780
21.
21. J. L. Finney, “Random packings and the structure of simple liquids. I. The geometry of random close packing,” Proc. R. Soc. A 319(1539), 479493 (1970).
http://dx.doi.org/10.1098/rspa.1970.0189
22.
22. J. L. Finney and J. Wallace, “Interstice correlation functions; a new, sensitive characterisation of non-crystalline packed structures,” J. Non-Cryst. Solids 43(2), 165187 (1981).
http://dx.doi.org/10.1016/0022-3093(81)90116-2
23.
23. R. P. Bywater and J. L. Finney, “Particle geometry and the chromatographic separation of cells: The simplest case of uniform particles,” J. Theor. Biol. 105(2), 333343 (1983).
http://dx.doi.org/10.1016/S0022-5193(83)80012-5
24.
24. Y. Hiwatari, T. Saito, and A. Ueda, “Structural characterization of soft-core and hard-core glasses by Delaunay tessellation,” J. Chem. Phys. 81(12), 60446050 (1984).
http://dx.doi.org/10.1063/1.447607
25.
25. M. Kimura and F. Yonezawa, “Nature of amorphous and liquid structures computer simulations and statistical geometry,” J. Non-Cryst. Solids 61-62(1), 535540 (1984).
http://dx.doi.org/10.1016/0022-3093(84)90601-X
26.
26. S. L. Chan and S. R. Elliott, “Interstices, diffusion doorways and free volume percolation studies of a dense random packed atomic structure,” J. Non-Cryst. Solids 124(1), 2233 (1990).
http://dx.doi.org/10.1016/0022-3093(90)91076-4
27.
27. V. Voloshin, S. Beaufils, and N. Medvedev, “Void space analysis of the structure of liquids,” J. Mol. Liq. 96-97, 101112 (2002).
http://dx.doi.org/10.1016/S0167-7322(01)00330-0
28.
28. A. P. Philipse, “Caging effects in amorphous hard-sphere solids,” Colloids Surf., A 213(23), 167173 (2003).
http://dx.doi.org/10.1016/S0927-7757(02)00510-1
29.
29. M. D. Haw, “Void structure and cage fluctuations in simulations of concentrated suspensions,” Soft Matter 2(11), 950956 (2006).
http://dx.doi.org/10.1039/b606039k
30.
30. A. V. Anikeenko and N. N. Medvedev, “Polytetrahedral nature of the dense disordered packings of hard spheres,” Phys. Rev. Lett. 98, 235504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.235504
31.
31. A. V. Anikeenko, M. L. Gavrilova, and N. N. Medvedev, “Shapes of delaunay simplexes and structural analysis of hard sphere packings,” in Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, Studies in Computational Intelligence Vol. 158, edited by M. L. Gavrilova (Springer, Berlin, 2008), pp. 1345.
32.
32. L. Pournin, “On the behavior of spherical and non-spherical grain assemblies, its modeling and numerical simulation,” Ph.D. thesis (EPFL, Lausanne, France, 2005).
33.
33. R. Courant and H. Robbins, “Apollonius’ problem,” in What Is Mathematics?: An Elementary Approach to Ideas and Methods (Oxford University Press, Oxford, England, 1996), pp. 117 and 125–127.
34.
34. B. D. Lubachevsky and F. H. Stillinger, “Geometric properties of random disk packings,” J. Stat. Phys. 60(5/6), 561583 (1990).
http://dx.doi.org/10.1007/BF01025983
35.
35. A. Donev, S. Torquato, and F. H. Stillinger, “Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. algorithmic details,” J. Comput. Phys. 202(2), 737764 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.08.014
36.
36. V. Ogarko and S. Luding, “Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems,” J. Chem. Phys. 136(12), 124508 (2012).
http://dx.doi.org/10.1063/1.3694030
37.
37. V. Ogarko and S. Luding, “Prediction of polydisperse hard-sphere mixture behavior using tridisperse systems,” Soft Matter 9(40), 95309534 (2013).
http://dx.doi.org/10.1039/c3sm50964h
38.
38. A. B. Hopkins, F. H. Stillinger, and S. Torquato, “Nonequilibrium static diverging length scales on approaching a prototypical model glassy state,” Phys. Rev. E 86(2), 021505 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021505
39.
39. N. Kumar, O. I. Imole, V. Magnanimo, and S. Luding, “Effects of polydispersity on the micro-macro behavior of granular assemblies under different deformation paths,” Particuology 12, 6479 (2014).
http://dx.doi.org/10.1016/j.partic.2013.07.011
40.
40. L. V. Woodcock, “Thermodynamic description of liquid-state limits,” J. Phys. Chem. B 116(12), 37353744 (2012).
http://dx.doi.org/10.1021/jp2116214
41.
41. A. Donev, F. H. Stillinger, and S. Torquato, “Configurational entropy of binary hard-disk glasses: Nonexistence of an ideal glass transition,” J. Chem. Phys. 127(12), 124509 (2007).
http://dx.doi.org/10.1063/1.2775928
42.
42. V. Ogarko, “Microstructure and macroscopic properties of polydisperse systems of hard spheres,” Ph.D. thesis (University of Twente, Enschede, Netherlands, 2014).
43.
43.It may happen that no such circle exists, which was occasionally observed for polydisperse systems. In this case we skip the corresponding neighbor-triangle from the statistics.
44.
44.We use the following test to check if a triangle with edge lengths a, b, and c is acute: , where ɛ = 1 − 10−12 is used to account for numerical error.
45.
45.The growth rate is defined as with the total system mass M.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/21/10.1063/1.4880236
Loading
/content/aip/journal/jcp/140/21/10.1063/1.4880236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/21/10.1063/1.4880236
2014-06-03
2016-09-27

Abstract

The channel size distribution in hard sphere systems, based on the local neighbor correlation of four particle positions, is investigated for all volume fractions up to jamming. For each particle, all three particle combinations of neighbors define channels, which are relevant for the concept of caging. The analysis of the channel size distribution is shown to be very useful in distinguishing between gaseous, liquid, partially and fully crystallized, and glassy (random) jammed states. A common microstructural feature of four coplanar particles is observed in crystalline and glassy jammed states, suggesting the presence of “hidden” two-dimensional order in three-dimensional random close packings.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/21/1.4880236.html;jsessionid=DiYvjK_r2SohjiYNWC_kLkYg.x-aip-live-02?itemId=/content/aip/journal/jcp/140/21/10.1063/1.4880236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/21/10.1063/1.4880236&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/21/10.1063/1.4880236'
Right1,Right2,Right3,