Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
2. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic Press, Boston, 2006).
3. W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett. 56, 2775 (1986);
3.Z. Tang, L. E. Seriven, and H. T. Davis, J. Chem. Phys. 95, 2659 (1991);
3.S. Sokolowski and J. Fischer, J. Chem. Phys. 96, 5441 (1992).
4. A. Kyrlidis and R. A. Brown, Phys. Rev. E 47, 427 (1993).
5. L. Mederos, G. Navascués, and P. Tarazona, Phys. Rev. E 49, 2161 (1994);
5.L. Mederos, G. Navascués, and P. Tarazona, Phys. Rev. E 47, 4284 (1993).
6. C. Rascón, L. Mederos, and G. Navascués, Phys. Rev. Lett. 77, 2249 (1996).
7. R. F. Kayser, Jr., J. B. Hubbard, and H. J. Raveche, Phys. Rev. B 24, 51 (1981).
8. J. S. McCarley and N. W. Ashcroft, Phys. Rev. E 55, 4990 (1997).
9. P. Mishra and Y. Singh, Phys. Rev. Lett. 97, 177801 (2006);
9.P. Mishra, S. L. Singh, J. Ram, and Y. Singh, J. Chem. Phys. 127, 044905 (2007).
10. S. L. Singh and Y. Singh, Europhys. Lett. 88, 16005 (2009);
10.S. L. Singh, A. S. Bharadwaj, and Y. Singh, Phys. Rev. E 83, 051506 (2011).
11. A. S. Bharadwaj, S. L. Singh, and Y. Singh, Phys. Rev. E 88, 022112 (2013).
12. A. Jaiswal, S. L. Singh, and Y. Singh, Phys. Rev. E 87, 012309 (2013).
13. Y. Singh, Phys. Rep. 207, 351 (1991).
14. K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 2721 (1999);
14.H. H. Grünberg, P. Keim, K. Zahn, and G. Maret, Phys. Rev. Lett. 93, 255703 (2004).
15. F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).
16. J.-M. Bomont, Adv. Chem. Phys. 139, 1 (2008).
17. J. L. Barrat, J. P. Hansen, and G. Pastore, Mol. Phys. 63, 747 (1988);
17.J. L. Barrat, J. P. Hansen, and G. Pastore, Phys. Rev. Lett. 58, 2075 (1987).
18. R. Lovett, C. Y. Mou, and F. P. Buff, J. Chem. Phys. 65, 570 (1976).
19.See supplementary material at for derivation of Eqs. (10)–(12) and for computational details. [Supplementary Material]
20. S. van Teeffelen, H. Lowen, and C. N. Likos, J. Phys. Condens. Matter 20, 404217 (2008).
21. M. Antlanger, G. Doppelbauer, M. Mazars, and G. Kahl, J. Chem. Phys. 140, 044507 (2014).
22. Y. Han, N. Y. Ha, A. M. Alsayed, and A. G. Yodh, Phys. Rev. E 77, 041406 (2008).

Data & Media loading...


Article metrics loading...



A method for calculating pair correlation functions in a crystal is developed. The method is based on separating the one- and two-particle correlation functions into the symmetry conserving and the symmetry broken parts. The conserving parts are calculated using the integral equation theory of homogeneous fluids. The symmetry broken part of the direct pair correlation function is calculated from a series written in powers of order parameters and that of the total pair correlation function from the Ornstein-Zernike equation. The results found for a two-dimensional hexagonal lattice show that the method provides accurate and detailed informations about the pair correlation functions in a crystal.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd