Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/23/10.1063/1.4883515
1.
1. J. Levine, The Photochemistry of Atmospheres (Elsevier, 1985).
2.
2. K. S. Kalogerakis, C. Romanescu, M. Ahmed, K. R. Wilson, and T. G. Slanger, Icarus 220, 205 (2012).
http://dx.doi.org/10.1016/j.icarus.2012.04.028
3.
3. J. Haqq-Misra, J. F. Kasting, and S. Lee, Astrobiology 11, 293 (2011).
http://dx.doi.org/10.1089/ast.2010.0572
4.
4. A. Anbar, M. Allen, and H. Nair, J. Geophys. Res. 98, 10925, doi:10.1029/93JE00330 (1993).
http://dx.doi.org/10.1029/93JE00330
5.
5. M. B. McElroy, N. Dak Sze, and Y. Ling Yung, J. Atmos. Sci. 30, 1437 (1973).
http://dx.doi.org/10.1175/1520-0469(1973)030<1437:POTVA>2.0.CO;2
6.
6. Z. Chen, F. Liu, B. Jiang, X. Yang, and D. H. Parker, J. Phys. Chem. Lett. 1, 1861 (2010).
http://dx.doi.org/10.1021/jz100356f
7.
7. I. Lu, J. J. Lin, S.-H. Lee, Y. T. Lee, and X. Yang, Chem. Phys. Lett. 382, 665 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.07.035
8.
8. Y. Matsumi, N. Shafer, K. Tonokura, M. Kawasaki, Y.-L. Huang, and R. J. Gordon, J. Chem. Phys. 95, 7311 (1991).
http://dx.doi.org/10.1063/1.461408
9.
9. A. Stolow and Y. T. Lee, J. Chem. Phys. 98, 2066 (1993).
http://dx.doi.org/10.1063/1.464238
10.
10. Y. F. Zhu and R. J. Gordon, J. Chem. Phys. 92, 2897 (1990).
http://dx.doi.org/10.1063/1.457937
11.
11. W. Chan, G. Cooper, and C. Brion, Chem. Phys. 178, 401 (1993).
http://dx.doi.org/10.1016/0301-0104(93)85079-N
12.
12. G. M. Lawrence, J. Chem. Phys. 56, 3435 (1972).
http://dx.doi.org/10.1063/1.1677717
13.
13. Y. Song, H. Gao, Y. C. Chang, Z. Lu, C. Y. Ng, and W. M. Jackson, Phys. Chem. Chem. Phys. 16, 563 (2014).
http://dx.doi.org/10.1039/c3cp53250j
14.
14. H. Gao, Y. Song, W. M. Jackson, and C. Y. Ng, J. Chem. Phys. 138, 191102 (2013).
http://dx.doi.org/10.1063/1.4807302
15.
15. Y. Pan, H. Gao, L. Yang, J. Zhou, C. Y. Ng, and W. M. Jackson, J. Chem. Phys. 135, 071101 (2011).
http://dx.doi.org/10.1063/1.3626867
16.
16. J. Zhou, K. C. Lau, E. Hassanein, H. Xu, S. X. Tian, B. Jones, and C. Y. Ng, J. Chem. Phys. 124, 034309 (2006).
http://dx.doi.org/10.1063/1.2158999
17.
17. C. Y. Ng, Annu. Rev. Phys. Chem. 53, 101 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.082001.144416
18.
18. C. Cossart-Magos, M. Jungen, and F. Launay, Mol. Phys. 61, 1077 (1987).
http://dx.doi.org/10.1080/00268978700101671
19.
19. L. Archer, G. Stark, P. Smith, J. Lyons, N. de Oliveira, L. Nahon, D. Joyeux, and D. Blackie, J. Quant. Spectrosc. Radiat. Transfer 117, 88 (2013).
http://dx.doi.org/10.1016/j.jqsrt.2012.11.009
20.
20. V. H. Dibeler and J. A. Walker, Int. J. Mass Spectrom. Ion Phys. 11, 49 (1973).
http://dx.doi.org/10.1016/0020-7381(73)80055-5
21.
21. K. Butler and C. Zeippen, J. Phys. IV 1, C1 (1991).
http://dx.doi.org/10.1051/jp4:1991117
22.
22. D. Y. Hwang and A. M. Mebel, Chem. Phys. 256, 169 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00108-7
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/23/10.1063/1.4883515
Loading
/content/aip/journal/jcp/140/23/10.1063/1.4883515
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/23/10.1063/1.4883515
2014-06-17
2016-12-04

Abstract

We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO( 3Π; v) + O(3P) and CO( ; v) + O(3P), formed by VUV photoexcitation of CO to the 4s(1 1) Rydberg state at 97,955.7 cm−1. The total kinetic energy release (TKER) spectra obtained from the O+ VMI-PI images of O(3P) reveal the formation of correlated CO( 3Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO to form the spin-allowed CO( 3Π; v = 0–2) + O(3P) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO( ; v) + O(3P) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO( ) with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO( 3Π; v = 0–2) + O(3P) channel are anisotropic, indicating that the predissociation of CO 4s(1 1) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO( ; v) + O(3P) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.