Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed. (Wiley, Hoboken, 2006), p. 209.
2. J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland et al., Biogeochemistry 70, 153 (2004).
3. A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, Science 326, 123 (2009).
4. J. E. Dibb, R. W. Talbot, J. W. Munger, D. J. Jacob, and S.-M. Fan, J. Geophys. Res. 103, 3475, doi:10.1029/97JD03132 (1998).
5. M. G. Hastings, E. J. Steig, and D. M. Sigman, J. Geophys. Res. 109, D20306, doi:10.1029/2004JD004991 (2004).
6. J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton, Science 320, 889 (2008).
7. D. L. Fibiger, M. G. Hastings, J. E. Dibb, and L. G. Huey, Geophys. Res. Lett. 40, 3484, doi:10.1002/grl.50659 (2013).
8. P. Wagnon, R. J. Delmas, and M. Legrand, J. Geophys. Res. 104, 3423, doi:10.1029/98JD02855 (1999).
9. R. Röthlisberger, M. A. Hutterli, S. Sommer, E. W. Wolff, and R. Mulvaney, J. Geophys. Res. 105, 20565, doi:10.1029/2000JD900264 (2000).
10. R. Röthlisberger, M. A. Hutterli, E. W. Wolff, R. Mulvaney, H. Fischer, M. Bigler, K. Goto-Azuma, M. E. Hansson, U. Ruth, M. L. Siggaard-Andersen, and J. P. Steffensen, Ann. Glaciol. 35, 209 (2002).
11. M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins, Atmos. Chem. Phys. 9, 8681 (2009).
12. R. E. Honrath, Y. Lu, M. C. Peterson, J. E. Dibb, M. A. Arsenault, N. J. Cullen, and K. Steffen, Atmos. Environ. 36, 2629 (2002).
13. M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino, Atmos. Chem. Phys. 13, 3045 (2013).
14. R. E. Honrath, S. Guo, M. C. Peterson, M. P. Dziobak, J. E. Dibb, and M. A. Arsenault, J. Geophys. Res. 105, 24183, doi:10.1029/2000JD900361 (2000).
15. L. Chu and C. Anastasio, J. Phys. Chem. A 107, 9594 (2003).
16. C. Zhu, B. Xiang, L. T. Chu, and L. Zhu, J. Phys. Chem. A 114, 2561 (2010).
17. T. Bartels-Rausch, H.-W. Jacobi, T. F. Kahan, J. L. Thomas, E. S. Thomson, J. P. D. Abbatt, M. Ammann, J. R. Blackford, H. Bluhm, C. Boxe, F. Domine, M. M. Frey, I. Gladich, M. I. Guzmán, D. Heger, T. Huthwelker, P. Klán, W. F. Kuhs, M. H. Kuo, S. Maus, S. G. Moussa, V. F. McNeill, J. T. Newberg, J. B. C. Pettersson, M. Roeselov, and J. R. Sodeau, Atmos. Chem. Phys. Discuss. 12, 30409 (2012).
18. D. D. Davis, J. Seelig, G. Huey, J. Crawford, G. Chen, Y. Wang, M. Buhr, D. Helmig, W. Neff, D. Blake, R. Arimoto, and F. Eisele, Atmos. Environ. 42, 2831 (2008).
19. J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, Atmos. Chem. Phys. 11, 9787 (2011).
20. J. L. Thomas, J. Stutz, B. Lefer, L. G. Huey, K. Toyota, J. E. Dibb, and R. von Glasow, Atmos. Chem. Phys. 11, 4899 (2011).
21. F. Domine and P. B. Shepson, Science 297, 1506 (2002).
22. F. Domine, M. Albert, T. Huthwelker, H. W. Jacobi, A. A. Kokhanovsky, M. Lehning, G. Picard, and W. R. Simpson, Atmos. Chem. Phys. 8, 171 (2008).
23. R. Ruzicka, L. Barkov, and P. Klán, J. Phys. Chem. B 109, 9346 (2005).
24. R. Kurková, D. Ray, D. Nachtigallová, and P. Klan, Environ. Sci. Technol. 45, 3430 (2011).
25. V. F. McNeill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, M. I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, and D. Voisin, Atmos. Chem. Phys. 12, 9653 (2012).
26. P. Nissenson, D. Dabdub, R. Das, V. Maurino, C. Minero, and D. Vione, Atmos. Environ. 44, 4859 (2010).
27. Y. Dubowski, A. J. Colussi, and M. R. Hoffmann, J. Phys. Chem. A 105, 4928 (2001).
28. H. Beine and C. Anastasio, J. Geophys. Res., [Atmos.] 116, D14302, doi:10.1029/2010JD015531 (2011).
29. A. M. Baergen and D. J. Donaldson, Environ. Sci. Technol. 47, 815 (2013).
30. T. Blunier, G. L. Floch, H. W. Jacobi, and E. Quansah, Geophys. Res. Lett. 32, L13501, doi:10.1029/2005GL023011 (2005).
31. J. Mack and J. R. Bolton, J. Photochem. Photobiol. A 128, 1 (1999).
32. E. S. N. Cotter, A. E. Jones, E. W. Wolff, and S. J. B. Bauguitte, J. Geophys. Res., [Atmos.] 108, 4147, doi:10.1029/2002JD002602 (2003).
33. H.-W. Jacobi and B. Hilker, J. Photochem. Photobiol. A 185, 371 (2007).
34. C. Boxe and A. Saiz-Lopez, Polar Sci. 3, 73 (2009).
35. J. Bock and H.-W. Jacobi, J. Phys. Chem. A 114, 1790 (2010).
36. J. Lee-Taylor and S. Madronich, J. Geophys. Res. 107, 4796, doi:10.1029/2002JD002084 (2002).
37. J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins, Atmos. Chem. Phys. 13, 6403 (2013).
38. W. R. Simpson, M. D. King, H. J. Beine, R. E. Honrath, and X. Zhou, Atmos. Environ. 36, 2663 (2002).
39. H.-W. Jacobi, T. Annor, and E. Quansah, J. Photochem. Photobiol. A 179, 330 (2006).
40. J. D. Burley and H. S. Johnston, Geophys. Res. Lett. 19, 1359, doi:10.1029/92GL01115 (1992).
41. T. A. Berhanu, C. Meusinger, J. Erbland, J. Savarino, and M. S. Johnson, J. Chem. Phys. 140, 244306 (2014).
42. J. C. Gallet, F. Domine, C. S. Zender, and G. Picard, Cryosphere 3, 167 (2009).
43. F. Domine, R. Salvatori, L. Legagneux, R. Salzano, M. Fily, and R. Casacchia, Cold Reg. Sci. Technol. 46, 60 (2006).
44. G. J. Phillips and W. R. Simpson, J. Geophys. Res. 110, D08306, doi:10.1029/2004JD005552 (2005).
45. M. D. King and W. R. Simpson, J. Geophys. Res. 106, 12499, doi:10.1029/2001JD900006 (2001).
46. E. Thibert and F. Domine, J. Phys. Chem. B 102, 4432 (1998).
47. L. G. Huey, D. J. Tanner, D. L. Slusher, J. E. Dibb, R. Arimoto, G. Chen, D. Davis, M. P. Buhr, J. B. Nowak, R. L. Mauldin III, F. L. Eisele, and E. Kosciuch, Atmos. Environ. 38, 5411 (2004).
48. H. J. Beine, A. Amoroso, F. Domine, M. D. King, M. Nardino, A. Ianniello, and J. L. France, Atmos. Chem. Phys. 6, 2569 (2006).
49. S. Goldstein and J. Rabani, J. Am. Chem. Soc. 129, 10597 (2007).
50. J. France and M. King, J. Glaciol. 58, 417 (2012).
51. D. Madsen, J. Larsen, S. K. Jensen, S. R. Keiding, and J. Thøgersen, J. Am. Chem. Soc. 125, 15571 (2003).
52. P. Warneck and C. Wurzinger, J. Phys. Chem. 92, 6278 (1988).

Data & Media loading...


Article metrics loading...



Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd