Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/24/10.1063/1.4882899
1.
1. G. Michalski, Z. Scott, M. Kabiling, and M. H. Thiemens, Geophys. Res. Lett. 30, 1870, doi:10.1029/2003GL017015 (2003).
http://dx.doi.org/10.1029/2003GL017015
2.
2. J. Savarino, J. Kaiser, S. Morin, D. M. Sigman, and M. H. Thiemens, Atmos. Chem. Phys. 7, 1925 (2007).
http://dx.doi.org/10.5194/acp-7-1925-2007
3.
3. M. Legrand, E. Wolff, and D. Wagenbach, Ann. Glaciol. 29, 66 (1999).
http://dx.doi.org/10.3189/172756499781821094
4.
4. E. W. Wolff, Nitrate in Polar Ice, Ice Core Studies of Global Biogeochemical Cycles (Springer-Verlag, Berlin, 1995).
5.
5. T. H. E. Heaton, Tellus B 42, 304 (1990).
http://dx.doi.org/10.1034/j.1600-0889.1990.00007.x-i1
6.
6. M. G. Hastings, E. J. Steig, and D. M. Sigman, J. Geophys. Res., [Atmos.] 109, D20306, doi:10.1029/2004JD004991 (2004).
http://dx.doi.org/10.1029/2004JD004991
7.
7. J. E. Dibb and S. I. Whitlow, Geophys. Res. Lett. 23, 1115, doi:10.1029/96GL01039 (1996).
http://dx.doi.org/10.1029/96GL01039
8.
8. R. Röthlisberger, M. A. Hutterli, S. Sommer, E. W. Wolff, and R. Mulvaney, J. Geophys. Res., [Atmos.] 105, 20565, doi:10.1029/2000JD900264 (2000).
http://dx.doi.org/10.1029/2000JD900264
9.
9. M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins, Atmos. Chem. Phys. 9, 8681 (2009).
http://dx.doi.org/10.5194/acp-9-8681-2009
10.
10. T. Blunier, G. L. Floch, H. W. Jacobi, and E. Quansah, Geophys. Res. Lett. 32, L13501, doi:10.1029/2005GL023011 (2005).
http://dx.doi.org/10.1029/2005GL023011
11.
11. R. Röthlisberger, M. A. Hutterli, E. W. Wolff, R. Mulvaney, H. Fischer, M. Bigler, K. Goto-Azuma, M. E. Hansson, U. Ruth, M. L. Siggaard-Andersen, and J. P. Steffensen, Ann. Glaciol.-Ser. 35, 209 (2002).
http://dx.doi.org/10.3189/172756402781817220
12.
12. E. W. Wolff, A. E. Jones, T. J. Martin, and T. C. Grenfell, Geophys. Res. Lett. 29, 1944, doi:10.1029/2002GL015823 (2002).
http://dx.doi.org/10.1029/2002GL015823
13.
13. A. E. Jones, R. Weller, P. S. Anderson, H. W. Jacobi, E. W. Wolff, O. Schrems, and H. Miller, Geophys. Res. Lett. 28, 1499, doi:10.1029/2000GL011956 (2001).
http://dx.doi.org/10.1029/2000GL011956
14.
14. R. E. Honrath, M. C. Peterson, S. Guo, J. E. Dibb, P. B. Shepson, and B. Campbell, Geophys. Res. Lett. 26, 695, doi:10.1029/1999GL900077 (1999).
http://dx.doi.org/10.1029/1999GL900077
15.
15. Y. H. Wang, Y. Choi, T. Zeng, D. Davis, M. Buhr, L. G. Huey, and W. Neff, Atmos. Environ. 41, 3944 (2007).
http://dx.doi.org/10.1016/j.atmosenv.2007.01.056
16.
16. A. M. Grannas, A. E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. J. Beine, M. Bergin, J. Bottenheim, C. S. Boxe, G. Carver, G. Chen, J. H. Crawford, F. Domine, M. M. Frey, M. I. Guzman, D. E. Heard, D. Helmig, M. R. Hoffmann, R. E. Honrath, L. G. Huey, M. Hutterli, H. W. Jacobi, P. Klan, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P. B. Shepson, W. R. Simpson, J. R. Sodeau, R. von Glasow, R. Weller, E. W. Wolff, and T. Zhu, Atmos. Chem. Phys. 7, 4329 (2007).
http://dx.doi.org/10.5194/acp-7-4329-2007
17.
17. H. W. Jacobi and B. Hilker, J. Photoch. Photobiol., A 185, 371 (2007).
http://dx.doi.org/10.1016/j.jphotochem.2006.06.039
18.
18. H. W. Jacobi, T. Annor, and E. Quansah, J. Photoch. Photobiol., A 179, 330 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.09.001
19.
19. R. E. Honrath, S. Guo, M. C. Peterson, M. P. Dziobak, J. E. Dibb, and M. A. Arsenault, J. Geophys. Res., [Atmos.] 105, 24183, doi:10.1029/2000JD900361 (2000).
http://dx.doi.org/10.1029/2000JD900361
20.
20. C. S. Boxe, A. J. Colussi, M. R. Hoffmann, I. M. Perez, J. G. Murphy, and R. C. Cohen, J. Phys. Chem. A 110, 3578 (2006).
http://dx.doi.org/10.1021/jp055037q
21.
21. M. Mochida and B. J. Finlayson-Pitts, J. Phys. Chem. A 104, 9705 (2000).
http://dx.doi.org/10.1021/jp001471a
22.
22. E. S. N. Cotter, A. E. Jones, E. W. Wolff, and S. J.-B. Bauguitte, J. Geophys. Res. 108, 4147, doi:10.1029/2002JD002602 (2003).
http://dx.doi.org/10.1029/2002JD002602
23.
23. D. D. Davis, J. Seelig, G. Huey, J. Crawford, G. Chen, Y. H. Wang, M. Buhr, D. Helmig, W. Neff, D. Blake, R. Arimoto, and F. Eisele, Atmos. Environ. 42, 2831 (2008).
http://dx.doi.org/10.1016/j.atmosenv.2007.07.039
24.
24. J. R. McCabe, C. S. Boxe, A. J. Colussi, M. R. Hoffmann, and M. H. Thiemens, J. Geophys. Res., [Atmos.] 110, D15310, doi:10.1029/2004JD005484 (2005).
http://dx.doi.org/10.1029/2004JD005484
25.
25. R. Qiu, S. A. Green, R. E. Honrath, M. C. Peterson, Y. Lu, and M. Dziobak, Atmos. Environ. 36, 2563 (2002).
http://dx.doi.org/10.1016/S1352-2310(02)00117-6
26.
26. F. Dominé and P. B. Shepson, Science 297, 1506 (2002).
http://dx.doi.org/10.1126/science.1074610
27.
27. Y. L. Yung and C. E. Miller, Science 278, 1778 (1997).
http://dx.doi.org/10.1126/science.278.5344.1778
28.
28. J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins, Atmos. Chem. Phys. 13, 6403 (2013).
http://dx.doi.org/10.5194/acp-13-6403-2013
29.
29. J. A. Schmidt, M. S. Johnson, and R. Schinke, P. Natl. Acad. Sci. U.S.A. 110, 17691 (2013).
http://dx.doi.org/10.1073/pnas.1213083110
30.
30. S. A. Ndengue, F. Gatti, R. Schinke, H. D. Meyer, and R. Jost, J. Phys. Chem. A 114, 9855 (2010).
http://dx.doi.org/10.1021/jp103266m
31.
31. R. Jost, Adv. Quantum Chem. 55, 75 (2008).
http://dx.doi.org/10.1016/S0065-3276(07)00206-7
32.
32. C. Meusinger, T. A. Berhanu, J. Erbland, J. Savarino, and M. S. Johnson, J. Chem. Phys. 140, 244305 (2014).
http://dx.doi.org/10.1063/1.4882898
33.
33. G. Mark, H. G. Korth, H. P. Schuchmann, and C. von Sonntag, J. Photoch. Photobio., A 101, 89 (1996).
http://dx.doi.org/10.1016/S1010-6030(96)04391-2
34.
34. J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins, Atmos. Chem. Phys. Discuss. 12, 28559 (2012).
http://dx.doi.org/10.5194/acpd-12-28559-2012
35.
35. J. K. Böhlke, S. J. Mroczkowski, and T. B. Coplen, Rapid Commun. Mass Spectrom. 17, 1835 (2003).
http://dx.doi.org/10.1002/rcm.1123
36.
36. M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino, Atmos. Chem. Phys. 13, 3045 (2013).
http://dx.doi.org/10.5194/acp-13-3045-2013
37.
37. S. Morin, J. Savarino, M. M. Frey, F. Dominé, H. W. Jacobi, L. Kaleschke, and J. M. F. Martins, J. Geophys. Res., [Atmos.] 114, D05303, doi:10.1029/2008JD010696 (2009).
http://dx.doi.org/10.1029/2008JD010696
38.
38. D. M. Sigman, K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bohlke, Anal. Chem. 73, 4145 (2001).
http://dx.doi.org/10.1021/ac010088e
39.
39. K. L. Casciotti, D. M. Sigman, M. G. Hastings, J. K. Böhlke, and A. Hilkert, Anal. Chem. 74, 4905 (2002).
http://dx.doi.org/10.1021/ac020113w
40.
40. J. Kaiser, M. G. Hastings, B. Z. Houlton, T. Röckmann, and D. M. Sigman, Anal. Chem. 79, 599 (2007).
http://dx.doi.org/10.1021/ac061022s
41.
41. G. Michalski, J. Savarino, J. K. Bohlke, and M. Thiemens, Anal. Chem. 74, 4989 (2002).
http://dx.doi.org/10.1021/ac0256282
42.
42. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science Books, 1997).
43.
43. L. Chu and C. Anastasio, J. Phys. Chem. A 107, 9594 (2003).
http://dx.doi.org/10.1021/jp0349132
44.
44. J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, Atmos. Chem. Phys. 11, 9787 (2011).
http://dx.doi.org/10.5194/acp-11-9787-2011
45.
45. D. Madsen, J. Larsen, S. K. Jensen, S. R. Keiding, and J. Thogersen, J. Am. Chem. Soc. 125, 15571 (2003).
http://dx.doi.org/10.1021/ja030135f
46.
46. J. A. Schmidt, M. S. Johnson, and R. Schinke, Atmos. Chem. Phys. 11, 8965 (2011).
http://dx.doi.org/10.5194/acp-11-8965-2011
47.
47. J. Lee-Taylor and S. Madronich, J. Geophys. Res., [Atmos.] 107, 4796, doi:10.1029/2002JD002084 (2002).
http://dx.doi.org/10.1029/2002JD002084
48.
48. M. Erko, G. H. Findenegg, N. Cade, A. G. Michette, and O. Paris, Phys. Rev. B 84, 104205 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104205
49.
49. M. R. Waterland and M. K. Kelley, J. Chem. Phys. 113, 6760 (2000).
http://dx.doi.org/10.1063/1.1310615
50.
50. H. Wang, E. Borguet, and K. B. Eisenthal, J. Phys. Chem. B 102, 4927 (1998).
http://dx.doi.org/10.1021/jp9806563
51.
51. H. McConnell, J. Chem. Phys. 20, 700 (1952).
http://dx.doi.org/10.1063/1.1700519
52.
52. I. Mochida, N. Shirahama, S. Kawano, Y. Korai, A. Yasutake, M. Tanoura, S. Fujii, and M. Yoshikawa, Fuel 79, 1713 (2000).
http://dx.doi.org/10.1016/S0016-2361(00)00034-X
53.
53. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, U.K., 1993).
54.
54. S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, Phys. Chem. Chem. Phys. 9, 2044 (2007).
http://dx.doi.org/10.1039/b701020f
55.
55. A. Delon, R. Jost, and M. Lombardi, J. Chem. Phys. 95, 5701 (1991).
http://dx.doi.org/10.1063/1.461620
56.
56. J. M. Flaud and R. Bacis, Spectrochim. Acta A 54, 3 (1998).
http://dx.doi.org/10.1016/S1386-1425(97)00214-X
57.
57. G. Picard and Q. Libois, personal communication (2013).
58.
58. M. Frey, personal communication (2013).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/24/10.1063/1.4882899
Loading
/content/aip/journal/jcp/140/24/10.1063/1.4882899
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/24/10.1063/1.4882899
2014-06-24
2016-12-04

Abstract

Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys.140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition ( 15N, 18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15 = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15 = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO and 15NO in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well reproduced the values obtained in the laboratory study. These cross sections can be used in isotopic models to reproduce the stable isotopic composition of nitrate found in Antarctic snow profiles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/24/1.4882899.html;jsessionid=qg3sThdzV8gpGUyNbaJ2Fd2K.x-aip-live-02?itemId=/content/aip/journal/jcp/140/24/10.1063/1.4882899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/24/10.1063/1.4882899&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/24/10.1063/1.4882899'
Right1,Right2,Right3,