Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Michalski, Z. Scott, M. Kabiling, and M. H. Thiemens, Geophys. Res. Lett. 30, 1870, doi:10.1029/2003GL017015 (2003).
2. J. Savarino, J. Kaiser, S. Morin, D. M. Sigman, and M. H. Thiemens, Atmos. Chem. Phys. 7, 1925 (2007).
3. M. Legrand, E. Wolff, and D. Wagenbach, Ann. Glaciol. 29, 66 (1999).
4. E. W. Wolff, Nitrate in Polar Ice, Ice Core Studies of Global Biogeochemical Cycles (Springer-Verlag, Berlin, 1995).
5. T. H. E. Heaton, Tellus B 42, 304 (1990).
6. M. G. Hastings, E. J. Steig, and D. M. Sigman, J. Geophys. Res., [Atmos.] 109, D20306, doi:10.1029/2004JD004991 (2004).
7. J. E. Dibb and S. I. Whitlow, Geophys. Res. Lett. 23, 1115, doi:10.1029/96GL01039 (1996).
8. R. Röthlisberger, M. A. Hutterli, S. Sommer, E. W. Wolff, and R. Mulvaney, J. Geophys. Res., [Atmos.] 105, 20565, doi:10.1029/2000JD900264 (2000).
9. M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins, Atmos. Chem. Phys. 9, 8681 (2009).
10. T. Blunier, G. L. Floch, H. W. Jacobi, and E. Quansah, Geophys. Res. Lett. 32, L13501, doi:10.1029/2005GL023011 (2005).
11. R. Röthlisberger, M. A. Hutterli, E. W. Wolff, R. Mulvaney, H. Fischer, M. Bigler, K. Goto-Azuma, M. E. Hansson, U. Ruth, M. L. Siggaard-Andersen, and J. P. Steffensen, Ann. Glaciol.-Ser. 35, 209 (2002).
12. E. W. Wolff, A. E. Jones, T. J. Martin, and T. C. Grenfell, Geophys. Res. Lett. 29, 1944, doi:10.1029/2002GL015823 (2002).
13. A. E. Jones, R. Weller, P. S. Anderson, H. W. Jacobi, E. W. Wolff, O. Schrems, and H. Miller, Geophys. Res. Lett. 28, 1499, doi:10.1029/2000GL011956 (2001).
14. R. E. Honrath, M. C. Peterson, S. Guo, J. E. Dibb, P. B. Shepson, and B. Campbell, Geophys. Res. Lett. 26, 695, doi:10.1029/1999GL900077 (1999).
15. Y. H. Wang, Y. Choi, T. Zeng, D. Davis, M. Buhr, L. G. Huey, and W. Neff, Atmos. Environ. 41, 3944 (2007).
16. A. M. Grannas, A. E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. J. Beine, M. Bergin, J. Bottenheim, C. S. Boxe, G. Carver, G. Chen, J. H. Crawford, F. Domine, M. M. Frey, M. I. Guzman, D. E. Heard, D. Helmig, M. R. Hoffmann, R. E. Honrath, L. G. Huey, M. Hutterli, H. W. Jacobi, P. Klan, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P. B. Shepson, W. R. Simpson, J. R. Sodeau, R. von Glasow, R. Weller, E. W. Wolff, and T. Zhu, Atmos. Chem. Phys. 7, 4329 (2007).
17. H. W. Jacobi and B. Hilker, J. Photoch. Photobiol., A 185, 371 (2007).
18. H. W. Jacobi, T. Annor, and E. Quansah, J. Photoch. Photobiol., A 179, 330 (2006).
19. R. E. Honrath, S. Guo, M. C. Peterson, M. P. Dziobak, J. E. Dibb, and M. A. Arsenault, J. Geophys. Res., [Atmos.] 105, 24183, doi:10.1029/2000JD900361 (2000).
20. C. S. Boxe, A. J. Colussi, M. R. Hoffmann, I. M. Perez, J. G. Murphy, and R. C. Cohen, J. Phys. Chem. A 110, 3578 (2006).
21. M. Mochida and B. J. Finlayson-Pitts, J. Phys. Chem. A 104, 9705 (2000).
22. E. S. N. Cotter, A. E. Jones, E. W. Wolff, and S. J.-B. Bauguitte, J. Geophys. Res. 108, 4147, doi:10.1029/2002JD002602 (2003).
23. D. D. Davis, J. Seelig, G. Huey, J. Crawford, G. Chen, Y. H. Wang, M. Buhr, D. Helmig, W. Neff, D. Blake, R. Arimoto, and F. Eisele, Atmos. Environ. 42, 2831 (2008).
24. J. R. McCabe, C. S. Boxe, A. J. Colussi, M. R. Hoffmann, and M. H. Thiemens, J. Geophys. Res., [Atmos.] 110, D15310, doi:10.1029/2004JD005484 (2005).
25. R. Qiu, S. A. Green, R. E. Honrath, M. C. Peterson, Y. Lu, and M. Dziobak, Atmos. Environ. 36, 2563 (2002).
26. F. Dominé and P. B. Shepson, Science 297, 1506 (2002).
27. Y. L. Yung and C. E. Miller, Science 278, 1778 (1997).
28. J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins, Atmos. Chem. Phys. 13, 6403 (2013).
29. J. A. Schmidt, M. S. Johnson, and R. Schinke, P. Natl. Acad. Sci. U.S.A. 110, 17691 (2013).
30. S. A. Ndengue, F. Gatti, R. Schinke, H. D. Meyer, and R. Jost, J. Phys. Chem. A 114, 9855 (2010).
31. R. Jost, Adv. Quantum Chem. 55, 75 (2008).
32. C. Meusinger, T. A. Berhanu, J. Erbland, J. Savarino, and M. S. Johnson, J. Chem. Phys. 140, 244305 (2014).
33. G. Mark, H. G. Korth, H. P. Schuchmann, and C. von Sonntag, J. Photoch. Photobio., A 101, 89 (1996).
34. J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins, Atmos. Chem. Phys. Discuss. 12, 28559 (2012).
35. J. K. Böhlke, S. J. Mroczkowski, and T. B. Coplen, Rapid Commun. Mass Spectrom. 17, 1835 (2003).
36. M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino, Atmos. Chem. Phys. 13, 3045 (2013).
37. S. Morin, J. Savarino, M. M. Frey, F. Dominé, H. W. Jacobi, L. Kaleschke, and J. M. F. Martins, J. Geophys. Res., [Atmos.] 114, D05303, doi:10.1029/2008JD010696 (2009).
38. D. M. Sigman, K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bohlke, Anal. Chem. 73, 4145 (2001).
39. K. L. Casciotti, D. M. Sigman, M. G. Hastings, J. K. Böhlke, and A. Hilkert, Anal. Chem. 74, 4905 (2002).
40. J. Kaiser, M. G. Hastings, B. Z. Houlton, T. Röckmann, and D. M. Sigman, Anal. Chem. 79, 599 (2007).
41. G. Michalski, J. Savarino, J. K. Bohlke, and M. Thiemens, Anal. Chem. 74, 4989 (2002).
42. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science Books, 1997).
43. L. Chu and C. Anastasio, J. Phys. Chem. A 107, 9594 (2003).
44. J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, Atmos. Chem. Phys. 11, 9787 (2011).
45. D. Madsen, J. Larsen, S. K. Jensen, S. R. Keiding, and J. Thogersen, J. Am. Chem. Soc. 125, 15571 (2003).
46. J. A. Schmidt, M. S. Johnson, and R. Schinke, Atmos. Chem. Phys. 11, 8965 (2011).
47. J. Lee-Taylor and S. Madronich, J. Geophys. Res., [Atmos.] 107, 4796, doi:10.1029/2002JD002084 (2002).
48. M. Erko, G. H. Findenegg, N. Cade, A. G. Michette, and O. Paris, Phys. Rev. B 84, 104205 (2011).
49. M. R. Waterland and M. K. Kelley, J. Chem. Phys. 113, 6760 (2000).
50. H. Wang, E. Borguet, and K. B. Eisenthal, J. Phys. Chem. B 102, 4927 (1998).
51. H. McConnell, J. Chem. Phys. 20, 700 (1952).
52. I. Mochida, N. Shirahama, S. Kawano, Y. Korai, A. Yasutake, M. Tanoura, S. Fujii, and M. Yoshikawa, Fuel 79, 1713 (2000).
53. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, U.K., 1993).
54. S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, Phys. Chem. Chem. Phys. 9, 2044 (2007).
55. A. Delon, R. Jost, and M. Lombardi, J. Chem. Phys. 95, 5701 (1991).
56. J. M. Flaud and R. Bacis, Spectrochim. Acta A 54, 3 (1998).
57. G. Picard and Q. Libois, personal communication (2013).
58. M. Frey, personal communication (2013).

Data & Media loading...


Article metrics loading...



Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys.140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition ( 15N, 18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15 = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15 = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO and 15NO in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well reproduced the values obtained in the laboratory study. These cross sections can be used in isotopic models to reproduce the stable isotopic composition of nitrate found in Antarctic snow profiles.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd